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     Recent advances in molecular genetics have ushered in a new 
and exciting age for investigating where, when, and how crop 
plants arose. Progress in understanding crop evolution began 
with morphological studies and archeological fi nds of early 
domesticates. Beginning in the mid 20 th  century, chromosome 
homology was used to investigate crop origins; later, allelic 
variants of enzymes (i.e., allozymes) were used to explore the 
origins and population genetics of crop species. The greatest 
technological leap for studying domestication, however, came 
with the development of DNA-based molecular markers begin-
ning in the 1980s. 

 The development of increasingly informative molecular 
markers has allowed for detailed investigations of the evolution 
of a number of crops. Such studies have provided insight into 
many issues, including the identifi cation of crop progenitors 
(e.g.,  Brubaker and Wendel, 1994 ;  Jacobs et al., 1995 ;  Heun 
et al., 1997 ;  Matsuoka et al., 2002 ;  Harter et al., 2004 ; Konishi 
et al., 2006;  Li et al., 2006b ), the localization and timing of 
domestication events, and the demographics of domestication 
( Eyre-Walker et al., 1998 ;  Buckler et al., 2001 ;  Liu and Burke, 
2006 ). Moreover, with the increasing ease and decreasing cost 
of molecular tool development, the resources necessary for in-
vestigating the genetic underpinnings of phenotypic traits are 
now in place for most major crops. These advances not only al-
low for an investigation of the overall genetic architecture of the 
wild-crop transition, but also make possible the identifi cation of 
genomic regions and genes that were subjected to selection dur-
ing the evolution of various crops. In some cases, researchers 
have been able to pinpoint the exact nucleotide changes respon-
sible for the production of key crop-related traits. 

 Our goal here is to review recent discoveries regarding the 
origin and subsequent evolution of our primary food crops. We 
do so against a backdrop of long-standing hypotheses as to 
where, how often, and how quickly domestication occurred, as 
well as the types of genetic changes that are involved in crop 
domestication and improvement. In doing so, we seek to clarify 
the present state of the fi eld and highlight promising avenues for 
research going forward. Our review is limited to seed-propagated, 
annual crop species because they are the best studied examples 
of domestication. 

 CENTERS OF DOMESTICATION AND 
THE ORIGIN OF CROPS 

 The Russian plant geneticist Nikolai Vavilov, who was the 
fi rst to scientifi cally pursue the study of domestication origins, 
proposed seven primary geographic  “ centers of domestication ”  
in the world, based on the regions having high crop varietal 
diversity ( Vavilov, 1926 ). These were China, South Asia, South-
west Asia (i.e., the Fertile Crescent), the Mediterranean, 
Ethiopia, greater Mexico, and the Andes. Vavilov ’ s centers of 
domestication are a valuable fi rst hypothesis as to where crops 
originated and where our sessile, agrarian cultures began. Since 
then, we have made great strides in pinpointing where our do-
mesticates have arisen and from which wild species they are 
derived. The most conclusive evidence comes from comple-
mentary investigations of archaeobotanical records, neutral ge-
netic variation, and domestication-related genes. 

 Our understanding of the number, size, and identity of the 
aforementioned centers of domestication has changed substan-
tially over the last 80 yr of research. Interestingly, there is still 
no clear consensus as to the location and number of domestica-
tion sites (see Gepts, 2004; Smith, 2006). Since Vavilov ’ s time, 
eastern North America ( Heiser, 1951 ; Smith, 2006), New 
Guinea ( Denham et al., 2003 ), and the Amazon Basin ( Olsen 
and Schaal, 2001 ) have been added as independent centers, 
though the last two are only known to have produced vegeta-
tively propagated cultigens. China, the Andes, and Ethiopia are 
now viewed as being less localized  centers than was originally 

  1  Manuscript received 21 August 2007; revision accepted 30 November 
2007. 

 The authors thank A. Liu, N. Sherman, D. Wills, and two anonymous 
reviewers for comments and suggestions that greatly improved this paper. 
The writing of this review was supported in part by grants from the National 
Science Foundation Plant Genome Research Program (DBI-0332411 and 
DBI-0653676) and the U. S. Department of Agriculture (03-35300-13104 
and 06-39454-17637). 

  2  Author for correspondence (e-mail: jmburke@uga.edu) 

 INVITED SPECIAL PAPER 

  Molecular insights into the evolution of crop 
plants    1    

  Jutta C. Burger, Mark A. Chapman, and John M. Burke   2   

 Department of Plant Biology, University of Georgia, Athens, Georgia 30602 USA 

 The domestication and improvement of crop plants have long fascinated evolutionary biologists, geneticists, and anthropolo-
gists. In recent years, the development of increasingly powerful molecular and statistical tools has reinvigorated this now fast-
paced fi eld of research. In this paper, we provide an overview of how such tools have been applied to the study of crop evolution. 
We also highlight lessons that have been learned in light of a few long-standing and interrelated hypotheses concerning the origins 
of crop plants and the nature of the genetic changes underlying their evolution. We conclude by discussing compelling evolutionary 
genomic approaches that make possible the effi cient and unbiased identifi cation of genes controlling crop-related traits and 
provide further insight into the actual timing of selection on particular genomic regions. 

  Key words:  association mapping; crop improvement; crop origins; domestication genes; genetic architecture; genome scans; 
QTL mapping. 



114 American Journal of Botany [Vol. 95

  Table  1. Details regarding the origin of major seed-propagated crop species and the genetic architecture of trait changes that occurred during their 
evolution. Note that studies of agronomic traits based on crosses between crop lines are not included here. 

Species No. of domestications Ploidy, chromosome no. Genetic architecture Source

Poaceae
Oats ( Avena sativa  L.)  ≥ 2 Allohexaploid, 2 N  = 42  —  a  Zhou et al., 1999 ;  Jellen and 

Beard, 2000 
Barley ( Hordeum vulgare  L.) 1 or 2 Diploid, 2 N  = 14 Likely few gene regions of large 

effect a 
 Badr et al., 2000 ; 
Komatsuda and Mano, 
2002;  Tanno et al., 2002 ; 
 Morrell and Clegg, 2007 

Paddy rice ( Oryza sativa  L.) 2 Diploid, 2 N  = 24 Few gene regions of large effect  Vitte et al., 2004 ; Konishi 
et al., 2006;  Li et al., 2006a , 
b;  Londo et al., 2006 

Pearl millet [ Pennisetum 
glaucum    (L.) R.Br.]

Multiple Diploid, 2 N  = 14 Few gene regions of large effect  Brunken et al., 1977 ; 
 Poncet et al., 1998 

Cereal rye 
 ( Secale cereale  L.)

1 or 2 Diploid, 2 N  = 14  —  a  Khush, 1963 ;  Sencer and 
Hawkes, 1980 

Sorghum [ Sorghum 
bicolor  (L.) Moench]

 ≥ 2 Allotetraploid, 2 N  = 20 Few gene regions of large effect  De Wet and Huckabay, 
1967 ;  Harlan, 1992 ; 
 Paterson et al., 1995  

Einkorn wheat ( Triticum 
monococcum  L.)

1 Diploid, 2 N  = 14 Likely few gene regions of 
large effect a 

 Heun et al., 1997 

Emmer, durum wheat [ T. 
turgidum  L.,  T. durum  L. 
(Desf.)]

1 or 2 Allotetraploid, 2 N  = 28 Few gene regions of large effect  Brown, 1999 ;  Oezkan 
et al., 2002 ; Peng et al., 
2003

Bread wheat ( T. aestivum  L.) 1 Allohexaploid, 2 N  = 42 Few gene regions of large effect b  McFadden and Sears, 
1946 ;  Pestsova et al., 2006 ; 
 Simons et al., 2006  

Maize ( Zea mays  L.) 1 Diploid, 2 N  = 20 Very few gene regions of large 
effect 

Doebley et al., 1997; 
 Matsuoka et al., 2002 

Asteraceae
Saffl ower ( Carthamus 
tinctorius  L.)

1 Diploid, 2 N  = 12  —  Imrie and Knowles, 1970 ; 
 Chapman and Burke, 2007 

Sunfl ower 
( Helianthus annuus  L.)

1 Diploid, 2 N  = 34 Many gene regions of small to 
moderate effect

 Burke et al., 2002 ;  Harter 
et al., 2004 ;  Burke et al., 
2005 ;  Wills and Burke, 
2007 

Brassicaceae
Rapeseed ( Brassica napus  L.)  — Allotetraploid, 2 N  = 38  —  a U 1935 in  Ladizinsky, 1985 
Cole crops ( B. oleracea  L.) 1 Diploid, 2 N  = 18 Likely few gene regions of 

large effect a 
 Song et al., 1990 ; 
 Purugganan et al., 2000 

Field mustard, turnip, 
 bok choy ( B. rapa  L.)

Multiple Diploid, 2 N  = 20  —  a  Song et al., 1990 

Radish ( Raphanus sativus  L.) 2 Diploid, 2 N  = 18  —  a  Yamagishi and Terachi, 
2003 

Malvaceae
Upland cotton ( Gossypium 
hirsutum  L.)

1 Allotetraploid, 2 N  = 52 Few gene regions of large 
effect

 Brubaker and Wendel, 
1994 ;  Udall and Wendel, 
2006 

Cucurbitaceae
Squash ( Cucurbita pepo  L.) 2 Diploid, 2 N  = 40  —  a  Sanjur et al., 2002 

Fabaceae
Chickpea ( Cicer arietinum  L.) 1 Diploid, 2 N  = 16 Likely few gene regions of 

large effect a 
 Abbo et al., 2003 ;  Abbo 
et al., 2005 

Soybean ( Glycine max  L.) 1 Diploid, 2 N  = 40 Likely few gene regions of 
large effect a 

 Hymowitz, 1970 ;  Keim 
et al., 1990 ;  Xu et al., 2002 ; 
 Carter et al., 2004 

Lentil ( Lens culinaris  L.) 1 Diploid, 2 N  = 14  —  a  Zohary, 1989 ;  Mayer and 
Soltis, 1994 ;  Ladizinsky, 
1999 

Common bean 
( Phaseolus vulgaris  L.)

2 Diploid, 2 N  = 22 Few gene regions of large effect  Sonnante et al., 1994 ; 
 Koinange et al., 1996 ; 
 Chacon et al., 2005 

Pea ( Pisum sativum  L.) 1 Diploid, 2 N  = 14 Few unlinked genes of 
large effect

 Zohary, 1989 ; 
 Timmerman-Vaughan 
et al., 2005 ;  Weeden, 2007 
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thought ( DeWet and Huckabay, 1967 ;  Gepts, 1998 ;  Chacon 
et al., 2005 ;  Londo et al., 2006 ; Smith, 2006), suggesting that 
agriculture was generally driven by human need and was 
achieved independently across several cultures ( Brown, 1999 ). 
Only the Fertile Crescent ( Salamini et al., 2002 ) and Southern 
Mexico (Smith, 2006) remain as narrowly delimited centers of 
origin for multiple crops. The occurrence of several domestica-
tions in close proximity to one another suggests that agricul-
tural technology arose with and followed the resident cultures 
that eventually migrated away from these regions (Zohary, 
1999;  Smith, 2001 ;  Willcox, 2005 ). 

 We have also learned that high varietal diversity in a particu-
lar region is not a reliable indicator of a center of domestication, 
as previously believed by Vavilov and his peers. Indeed, vari-
etal diversity does not correlate well with archeological and 
molecular data regarding crop origins ( Harlan, 1992 ), perhaps 
in part because elevated levels of diversity can result from sec-
ondary contact between crops and their wild relatives (e.g.,  Ell-
strand et al., 1999 ;  Hauser and Bjorn, 2001 ;  Weissmann et al., 
2005 ). In fact, the evolution of diverse landraces frequently in-
volves introgression from wild relatives, as has been the case 
for cotton ( Brubaker and Wendel, 1994 ), sorghum ( De Wet and 
Huckabay, 1967 ;  Casa et al., 2005 ), pea ( Timmerman-Vaughan 
et al., 2005 ), and sunfl ower ( Putt, 1997 ;  Burke et al., 2005 ). 
Because it often occurs well outside the original site of domes-
tication, such introgression can lead to false conclusions re-
garding the origin(s) of crops. 

 Reconstructions of domestication origins are further compli-
cated when crops have been moved long distances very early in 
the domestication process. For instance, though sorghum is na-
tive to, and was almost certainly initially domesticated in sub-
Saharan Africa ( Harlan, 1992 ), its earliest crop remains are 
from southern Arabia ( Potts, 1993 ) and India ( Kajale, 1991 ). 
Similarly, although the prehistoric native range of wild sun-
fl ower likely extended across the northern and central Great 
Plains of North America ( Heiser et al., 1969 ), the oldest re-
mains to date of its domesticated form were found further east, 
in Tennessee ( Crites, 1993 ). 

 SINGLE OR MULTIPLE DOMESTICATIONS OF CROPS? 

 A number of studies have recently focused on the issue of 
whether particular crop species were domesticated once or mul-
tiple times. Beyond providing insight into the repeatability of 
the domestication process, the documentation of multiple ori-
gins provides largely unexplored replication for studying the 
outcome of long-term selection and answering wide-reaching 

questions in the fi eld of evolutionary biology, such as whether 
there are multiple genetic  “ paths ”  leading to a given (domesti-
cated) phenotype. Furthermore, accurate inferences regarding 
both the identity of crop progenitors and the number of times a 
particular crop was domesticated are key to being able to disen-
tangle the often complex genetic consequences of domestica-
tion and crop improvement (e.g.,  Ballini et al., 2007 ). 

  Vavilov (1926)  assumed implicitly that crop species had 
each been domesticated only once when he proposed his cen-
ters of domestication, and this assumption has been borne out 
for a number of species ( Table 1  ). To date, maize ( Zea mays  L.) 
remains the strongest and best characterized example of a 
single domestication, which is thought to have occurred 
in southern Mexico more than 6300 years ago ( Piperno and 
Flannery, 2001 ;  Matsuoka et al., 2002 ). Similarly, einkorn 
( Triticum monococcum  L.), the most primitive domesticated 
wheat, was apparently domesticated only once within its range 
in the northern Fertile Crescent ( Heun et al., 1997 ). Sunfl ower 
( Helianthus annuus  L.), based on molecular analyses and a 
reevaluation of archeological remains, also appears to be the 
product of a single domestication, most likely in east-central 
North America ( Harter et al., 2004 ; Smith, 2006;  Wills and 
Burke, 2006 ), though the possibility of a second origin in 
Tabasco, Mexico has been proposed (see  Lentz et al., 2001 ; 
 Tang and Knapp, 2003 ). 

 For several crop species, however, the available evidence 
supports multiple origins of domestication ( Table 1 ). Most 
notably, at least two independent origins of paddy rice,  Oryza 
sativa  L., have been confi rmed based on comparisons of retro-
transposons and gene sequences from the  indica  and  japonica  
lineages and their progenitor ( Vitte et al., 2004 ;  Londo et al., 
2006 ). The loss of shattering in these two subspecies is further-
more conditioned by mutations in different genes (Konishi et al., 
2006;  Li et al., 2006b ). Both phenotypic and molecular data 
also suggest that common bean,  Phaseolus vulgaris  L., was 
domesticated twice across its broad range in South and Central 
America ( Blumler, 1992 ;  Koinange et al., 1996 ;  Chacon et al., 
2005 ) and that squash,  Cucurbita pepo  L., was likely domesti-
cated in both southern Mexico and in northeastern Mexico or 
southeastern North America ( Sanjur et al., 2002 ). 

 Interestingly, a consensus on the number of origins has not 
been reached for some of our most important crop species. This 
is particularly true for several cereal crops of the narrowly delim-
ited Fertile Crescent (Zohary, 1999;  Abbo et al., 2001 ;  Salamini 
et al., 2002 ;  Allaby and Brown, 2003 ; Salamini et al., 2004;  
Willcox, 2005 ). Conclusions drawn from whole genome analy-
ses (such as AFLP or SSR surveys) have generally suggested sin-
gle origins, whereas phenotypic data and sequence analyses of 

Table 1. Continued.

Species No. of domestications Ploidy, chromosome no. Genetic architecture Source

Solanaceae
Tomato ( Solanum 
lycopersicum  L.) 

 — Diploid, 2 N  = 24 Gene regions of both major 
and minor effect

 Rick and Fobes, 1975 ; 
 Frary et al., 2000 ;  Nesbitt 
and Tanksley, 2002 

Eggplant ( Solanum 
melongena  L.)

 — Diploid, 2 N  = 24 Few unlinked gene regions of 
large effect

 Doganlar et al., 2002a ,  b 

      a Quantitative trait loci have only (or primarily) been characterized from crosses between crop lines and not between cultivated lines and their putative 
progenitors. 

  b Quantitative trait loci represent those from  A. tauschii  introgression lines of the D genome. 
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reduced the speed at which domestication traits such as shatter-
ing and large seed size became fi xed in early cultivated plants 
 ( Balter, 2007 ;  Fuller, 2007 ). Therefore, weak selection for do-
mestication traits appears to have driven the earliest stages of 
crop evolution in this region. It is worth noting, however, that 
the discussed conclusions regarding the tempo of domestication 
are based on archeological fi nds solely from western Asia, where 
crops were grown in sympatry with their wild relatives. In Meso-
America, where the earliest evidence of maize cultivation oc-
curs outside the range of its progenitor and is in the form of 
ancient entire domesticated maize cobs ( Piperno and Flannery, 
2001 ), the available evidence suggests that domestication may 
have proceeded much more rapidly. 

 While a variety of evolutionary factors, including effective 
population size, the occurrence of genetic bottlenecks, the 
strength of selection, and rates of gene fl ow, can infl uence the 
ease and tempo of domestication (e.g.,  Hillman and Davies, 
1990 ;  Eyre-Walker et al., 1998 ; Le Thierry D ’ Ennequin et al., 
1999), genetic architecture is also critical. In this context, it is 
worth noting that quantitative trait locus (QTL) mapping stud-
ies of domestication-related traits have shown that domestica-
tion is typically driven by changes at a small number of loci, 
each of relatively large effect (e.g.,  Doebley, 1992 ;  Koinange 
et al., 1996 ;  Cai and Morishima, 2002 ). This fi nding is consistent 
both with predictions that a few loci of large effect can be se-
lected on more effi ciently than a larger number of loci of small 
effect (Falconer and Mackay, 1996) and with the notion that 
some species (perhaps those with the most appropriate genetic 
architecture) are more easily domesticated than others (sensu 
 Diamond, 1997 ). To date, sunfl ower stands as the only well-
documented example in which domestication has proceeded by 
selection on a large number of loci, most of which have small to 
moderate phenotypic effects ( Burke et al., 2002 ;  Wills and 
Burke, 2007 ). 

 Linkage relationships among loci under selection may also 
infl uence the tempo of domestication.  Stebbins (1971)  was 
among the fi rst to propose that adaptive gene clusters could 
be selected for and fi xed in species, though chromosomal 
translocations, the mechanism that he envisioned for shuf-
fl ing genes throughout the genome, are too infrequent to real-
istically produce such a pattern in crop species. Nonetheless, 
there is evidence that domestication-related QTL are often 
found in clusters within a genome (e.g.,  Doebley and Stec, 
1991 ;  Fulton et al., 1997 ; but see  Doganlar et al., 2002a ; 
 Weeden, 2007 ). A simulation study of evolution under do-
mestication by Le Thierry D ’ Ennequin et al. (1999) has fur-
ther shown that suites of favorable alleles are fi xed more 
readily in outcrossing species when the genes in question are 
clustered than when they are less tightly linked. The tempo of 
domestication was further enhanced in these simulations by 
reducing population size and decreasing migration rates. 
While this model did not consider gene fl ow between the neo-
domesticate and its progenitor and did not propose a mecha-
nism responsible for the gene clustering (unless high levels of 
genetic redundancy are assumed), it clearly suggests that spe-
cies with clusters of benefi cial genes might be more easily 
and rapidly domesticated than those in which genes control-
ling domestication traits are more dispersed. Alternatively, 
some cases of apparent gene clustering may be due to pleio-
tropic effects of individual genes (e.g.,  Doganlar et al., 2002a ), 
and thus more detailed analyses are necessary before fi rm 
conclusions can be drawn. 

domestication-related genes often imply multiple domestications. 
For instance, AFLP comparisons of wild and cultivated tetraploid 
wheat suggest that tetraploid emmer,  Triticum turgidum  L., and 
durum wheat,  T. durum  L. (Desf.), arose only once ( Oezkan 
et al., 2002 ). However, the discovery of two distinct, ancient 
allelic lineages of a glutenin gene in different cultivated emmer 
accessions suggests the possibility of multiple domestications 
( Allaby et al., 1999 ;  Yan et al., 2003 ). Similarly, AFLP data point 
to a single origin for two-rowed barley ( Hordeum vulgare  L.) 
from  H. spontaneum  L. in the western Fertile Crescent ( Badr 
et al., 2000 ), yet two lineages of seed-head shattering genes are 
fi xed across East and West Asian cultivated barley lines, suggest-
ing two origins to domestication ( Takahashi and Hayashi, 1964 ). 
Even hexaploid bread wheat,  T. aestivum  L., which is the most 
recently derived form of wheat and generally accepted as having 
originated only once from a tetraploid domesticated emmer  ×  
wild diploid goatgrass hybrid, has a glutenin protein diversity 
that is too great to have emerged by mutation alone since its ori-
gin ca. 9000 years ago ( Allaby et al., 1999 ). While this pattern 
could have been produced by postdomestication introgression, 
it is also possibly due to multiple origins of domestication. 

 Clearly, reconstructions of crop origins are most robust when 
multiple independent approaches give consistent results. Phylo-
genetic origins extrapolated from analyses using anonymous 
genomic DNA markers (AFLP, RFLP, RAPD), while based 
on a representative sampling of the whole genome, have been 
criticized for being biased toward resolving monophyly ( Abbo 
et al., 2001 ;  Allaby and Brown, 2003 ; but see Salamini et al., 
2004). In contrast, inferences based on only one or only a few 
genes can be suspect, as they refl ect the evolutionary history of 
only a small portion of the genome (e.g.,  Kopp and True, 2002 ; 
 Rokas et al., 2003 ). In fact, the validity of basing inferences on 
a small number of genes depends largely on the choice of genes 
analyzed; genes that are directly related to domestication (e.g., 
a seed-head shattering gene) should refl ect the actual path of 
domestication, whereas genes related to crop improvement and/or 
varietal diversifi cation may refl ect postdomestication introgres-
sion from a wild relative. 

 GENETIC ARCHITECTURE AND 
THE TEMPO OF DOMESTICATION 

 In  The Genetical Theory of Natural Selection , R. A.  Fisher 
(1930)  famously proposed that evolution in response to natural 
selection is a slow, gradual process. Although crop species are 
generally believed to have evolved more rapidly than their wild 
relatives, the early stages of domestication were traditionally 
viewed as occurring relatively slowly, proceeding over a times-
cale of thousands of years ( Harlan, 1992 ). Mathematical models 
estimating the time required for domestication (e.g.,  Eyre-
Walker et al., 1998 ; Le Thierry D ’ Ennequin et al., 1999) and our 
greater understanding of how quickly species can evolve (e.g., 
 Rieseberg et al., 2002 ;  Reznick and Ghalambor, 2001 ) now sug-
gest that domestication can, in theory, occur within a few hun-
dred generations. Indeed,  Hillman and Davies (1990) , proposed 
very rapid rates of crop evolution by tracking selection on wheat 
with repeated sickle harvesting. In contrast, recent archeological 
evidence from the Fertile Crescent points to a surprisingly slow 
rate of transition from wild to domesticated forms (e.g.,  Tanno 
and Willcox, 2006 ). Inconsistent harvesting practices as well 
as repeated restocking of seed from the wild appear to have 
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 THE ONGOING SEARCH FOR GENES INVOLVED IN 
CROP EVOLUTION 

 Until relatively recently, QTL analyses were the primary 
means for localizing domestication- and improvement-related 
genes (see  Paterson, 2002 ). Although such analyses can pro-
vide a great deal of insight into the genetic architecture of traits 
of interest, they are both labor-intensive and time-consuming, 
requiring the development and phenotypic characterization of 
a large, segregating population, as well as the construction of a 
genetic map. Moreover, QTL mapping typically provides a 
relatively low level of resolution, with genes being localized to 
intervals spanning several centimorgans; depending on the 
taxon being studied, such regions can encompass hundreds of 
genes. While a handful of QTLs have been cloned in crop plants 
(discussed earlier), map-based cloning can be an ineffi cient 
process and of little utility in species that are vegetatively prop-
agated and/or have long generation times. 

 An alternative to family-based QTL mapping is association 
mapping, which involves correlating polymorphisms in candi-
date genes with phenotypic variation in existing, diverse popula-
tions ( Buckler and Thornsberry, 2002 ). Not only does association 
mapping obviate the need to develop a mapping population via 
controlled crosses, but it also provides a much greater level of 
precision, as the resolution of any mapping approach depends on 
the extent of linkage disequilibrium (LD; i.e., the nonrandom 
association of alleles at two loci) in the focal population. In the 
case of family-based mapping populations, the limited opportu-
nity for recombination during population development results in 
high LD over large physical distances. In contrast, the individu-
als that comprise a typical association mapping population are 
the product of many generations of historical recombination, 
thereby resulting in greatly reduced LD and consequently in-
creased mapping precision. In fact, depending on the taxon un-
der consideration, functional variation can potentially be mapped 
to the level of one or a few genes (e.g.,  Thornsberry et al., 2001 ; 
 Palaisa et al., 2004 ;  Olsen et al., 2006 ). The principal limitation 
of this approach is that it requires a priori knowledge of candi-
date genes and phenotypes to be tested. 

 A third strategy for identifying the genes underlying crop-
related traits is to perform a large-scale genomic scan in a crop 
species and its wild progenitor to identify loci that show evi-
dence of selection during domestication. Selective sweeps (i.e., 
periods of intense selection during which an allele is  “ swept ”  to 
fi xation) are predicted to dramatically decrease genetic varia-
tion in and around the selected locus ( Maynard-Smith and 
Haigh, 1974 ; but see Innan and Kim, 2004) without changing 
levels of diversity elsewhere in the genome. Assuming that the 
LD breaks down suffi ciently rapidly, it should thus be possible 
(at least in theory) to identify narrow genomic regions that have 
experienced a recent selective sweep. In its purest form, this 
approach involves generating population genetic data for a 
large number of randomly selected loci, ranking the loci based 
on the relative change in diversity between the ancestral and 
derived (i.e., wild and crop) populations, and identifying those 
in the tail of the distribution that have a greater than expected 
loss of diversity ( Schl ö tterer, 2002 ;  Storz, 2005 ;  Ross-Ibarra 
et al., 2007 ;  Fig. 1 ).  More recently, it has been suggested that 
the use of a demographic null model that is based on observed 
patterns of neutral genetic diversity and implicitly accounts for 
factors such as the occurrence of a population bottleneck during 
domestication (e.g.,  Buckler et al., 2001 ), will further improve 

 THE NATURE OF DOMESTICATION GENES 

  Harlan et al. (1973)  proposed that a distinct suite of traits —
 later termed the  “ domestication syndrome ”  — would likely be 
selected for during the initial stages of domestication. These 
traits are all associated with increasing ease of harvest and 
include reduced shattering, more determinate growth habit, 
greater infl orescence size, greater seed (or fruit) size, and loss 
of seed dormancy. In the time since Harlan fi rst published this 
list, domestication genes have frequently been more loosely de-
fi ned to include any gene selected on and consistently differing 
between a crop and its nearest wild relative (e.g.,  Koinange 
et al., 1996 ;  Doebley et al., 2006 ;  Weeden,  2007 ). Crop improve-
ment after domestication can, however, also result in the fi xa-
tion of traits that were likely not of interest to early farmers 
(e.g., dwarf habit). Here, we follow a strict defi nition of what 
constitutes a domestication-related trait, in line with the views 
of  Harlan et al. (1973) . 

 In the past, domestication-related traits were widely believed 
to be conditioned by recessive, loss-of-function alleles (e.g., 
 Ladizinsky, 1985 ;  Lester, 1989 ); however, the results of QTL 
mapping studies as well as the lessons learned from the recent 
cloning of a handful of domestication genes show a less consis-
tent pattern. While nonshattering appears to be a recessive trait 
in a number of cereals (e.g.,  Takahashi and Hayashi, 1964 ; 
 Harlan et al., 1973 ;  Watanabe, 2005 ;  Li et al., 2006b ) and fruit 
weight is partially recessive in tomato and eggplant ( Frary et al., 
2000 ;  Doganlar et al., 2002a ), a number of QTL studies sug-
gest that the genes underlying many other domestication-related 
traits act in a nonrecessive manner (e.g.,  Doebley et al., 1990, 
1994 ;  Doebley and Stec, 1991 ;  deVicente and Tanksley, 1993 ; 
 Tanksley, 1993 ;  Burke et al., 2002 ; Li et al., 2006a;  Wills and 
Burke, 2007 ; reviewed in  Doebley et al., 2006 ). Similarly, the 
view that domestication-related traits are typically conditioned 
by loss-of-function alleles has been challenged. In fact, only 
one of seven sequenced  “ domestication genes ”  reviewed by 
 Doebley et al. (2006)  is a loss-of-function allele (loss of red 
pericarp in rice;  Sweeney et al., 2006 ), though this gene may 
not have truly been involved in domestication; the remainder 
are amino acid substitutions and/or expression level differences 
caused by mutations in regulatory regions ( Doebley et al., 
2006 ). 

Curiously, loss-of-function alleles appear to be relatively 
common for genes associated with crop improvement and/or 
varietal divergence. Based on a recent review, nine of 19 such 
loci harbor alleles with premature stop codons, intron splice-
site defects, or other sorts of disrupted coding sequences, with 
the remainder evenly split between regulatory changes and 
amino acid substitutions ( Doebley et al., 2006 ). Further exam-
ples include loss-of-function alleles such as those affecting 
fl owering time ( Foucher et al., 2003 ) and dwarf habit ( Martin 
et al., 1997 ) in pea. Likewise, the transition from two-rowed to 
six-rowed barley is conditioned by a recessive, loss-of-function 
mutation (Komatsuda et al., 2007).

 The foregoing conclusions must, of course, be tempered by 
the realization that only a relatively small number of genes 
underlying crop-related traits have been characterized to date. 
Moreover, these loci represent a nonrandom sample of genes 
that were targeted for cloning because they were tractable and 
not necessarily because they were the most important in crop 
evolution. As such, the lessons that we have learned thus far 
might prove to be somewhat biased. 
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selection occurred during the initial period of domestication or 
during the subsequent period of improvement. In one case, 
 Burke et al. (2005)  used an SSR-based scan of wild, primitive, 
and improved sunfl ower lines to document the likely occur-
rence of multiple postdomestication selective sweeps along a 
single linkage group, presumably due to recent selection on 
seed oil characters. In the other case,  Yamasaki et al. (2005)  
performed a sequence-based analysis that allowed them to iden-
tify eight genes that had evidence of selection during maize do-
mestication as well as 10 genes that had evidence of selection 
during the subsequent period of improvement. 

 The primary drawback of the genome scan approach is that it 
provides no direct information on the phenotypic effects of the 
genes of interest. Once identifi ed, the effects of these genes must 
be investigated using a combination of bioinformatic tools, ge-
netic map data, and reverse genetic approaches. A second con-
cern in identifying genes under selection based on a genome scan 
is the possibility of false positive results. Fortunately, the com-
bined use of multiple statistical tests can reduce the false posi-
tive rate signifi cantly as compared to the use of only a single test 
(e.g., Schl ö tterer and Dieringer, 2004;  Bonin et al., 2006 ). Despite 
these drawbacks, genome scans remain an attractive option for 
the identifi cation of genes that were likely involved in crop evolu-
tion because they avoid many of the limitations of map-based 
cloning and also obviate the need for a priori identifi cation of 
candidate genes. Going forward, technological advances in the 
realm of high-throughput genotyping and sequencing should 
greatly increase the effi ciency of these sorts of investigations. 

 SUMMARY 

 Crop evolution continues to be a fascinating area of research 
for anthropologists, evolutionary biologists, and crop scientists. 
Over the years, the development of an increasingly broad array of 
molecular tools has resulted in a variety of fascinating insights 
into the origins and subsequent evolution of our primary food 
crops. In particular, it has become clear that a number of crops are 
the product of multiple origins; that although domestication can 
in theory be rapid, it appears to have proceeded slowly in many 
cases; and that contrary to past assumptions, traits related directly 
to domestication are not generally conditioned by recessive loss-
of-function mutations. Most recently, the development of evolu-
tionary genomic approaches for identifying genomic regions that 
have undergone selection has made possible the effi cient (and 
unbiased) identifi cation of genes involved in crop evolution. Such 
approaches also have the potential to provide insight into the tim-
ing of selection (i.e., domestication vs. improvement), thereby 
allowing for the temporal dissection of the genetics of crop evolu-
tion. These advances have provided a great deal of insight into the 
genetic changes underlying the transformation of wild and some-
times weedy species into the valuable crops upon which agrarian 
societies have been built. Such work has also pushed crop plants 
toward center stage in the fi eld of evolutionary genetics, where 
they serve as useful models for studying the molecular basis of 
adaptive trait divergence. 
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reviewed in  Ross-Ibarra et al., 2007 ). 

 Beyond simply identifying genes that underwent selection 
during crop evolution, this approach (when coupled with ap-
propriate sampling) has the potential to provide insight into 
the timing of selection (i.e., domestication vs. improvement). 
Indeed, domestication-related genes are expected to have an 
 extreme loss of diversity in even the most primitive cultivars 
( Fig. 1A ). In the case of improvement-related genes, however, 
the situation is more complex. While a strong selective sweep 
during improvement would result in a similar selectively in-
duced loss of diversity across the primitive-improved transition 
( Fig. 1B ), genes involved in the diversifi cation of crop lineages 
and/or local adaptation might be expected to harbor different 
alleles in different lineages, thereby resulting in the retention of 
diversity across lines. When coupled with introgression from 
wild relatives, this sort of diversifying selection could even pro-
duce an increase in diversity across improved lines ( Fig. 1C ). 

 To date, genomic scans for selection have been carried out in 
a handful of taxa using either genotype- or sequence-based ap-
proaches. For example, an analysis of SSR diversity in sorghum 
( Sorghum bicolor  L.) revealed that nearly 15% of the loci ana-
lyzed had evidence of past selection ( Casa et al., 2005 ). A simi-
lar sequence-based analysis, however, failed to fi nd evidence of 
selection, possibly due to the confounding effects of population 
structure, migration, and limited sampling depth ( Hamblin et al., 
2004, 2006 ). For maize, an SSR-based analysis ( Vigouroux 
et al., 2002 ) and analyses of sequence variation (Tenaillon 
et al., 2004;  Wright et al., 2005 ;  Yamasaki et al., 2005 ) have 
yielded a number of promising candidates for domestication-
related genes. Interestingly, in both sorghum and maize, the 
loci identifi ed as candidates for selectively important genes of-
ten mapped to regions of the genome known to harbor domesti-
cation-related QTLs ( Casa et al., 2005 ;  Wright et al., 2005 ). 

 Returning to the issue of the timing of selection, two studies 
have thus far used stratifi ed sampling to investigate whether 

 Fig. 1.   Schematic representation of the predicted loss of diversity across 
cultivar lines during crop evolution. The blue line represents the diversity of 
a selectively neutral locus, and the red line shows that of a hypothetical gene 
under selection. Depicted are (A) the reduction in diversity of a neutral gene 
and of a gene that underwent selection during domestication, (B) the reduc-
tion in diversity expected for a gene that underwent strong directional selec-
tion during improvement, and the special case in which (C) gene diversity is 
maintained or even increases across lines due to divergent selection and the 
possible effects of introgression during improvement.   
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