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Many crop plants exhibit a strong reduction in genetic vari-
ation relative to their wild progenitors due to population 
bottlenecks and strong artificial selection during domes-

tication1. Genetic variation has been eroded further over the past 
century with the transition from traditional varieties adapted to 
their local environment to uniform elite lines. The reduced diver-
sity of cultivated lines represents a substantial constraint to breed-
ing2–4, increasing interest in tapping the enormous reservoirs of 
genetic variation found in crop wild relatives. However, the use 
of crop wild relatives in breeding can also reintroduce undesired 
traits that were eliminated during domestication. Development of 
genomic information for a crop and its wild relatives can illumi-
nate the genetic basis and ancestry of both beneficial and unde-
sirable traits at high resolution5,6. Pan-genomes, which capture a 
broader representation of the genomic variation contained in a 
gene pool7,8, represent an especially useful resource for research 
and breeding. However, developing a pan-genome for crops is 
challenging owing to the size and complexity of their genomes, 
so such analyses are often restricted to a few representative  

genotypes9–11 or a reduced fraction of the genome12,13. Here, we 
describe the development of a comprehensive pan-genome for 
sunflower, a globally important oil crop.

Sunflower (Helianthus annuus L.) exhibits typical domestication 
syndrome, including dramatic morphological and ecological dif-
ferences from its wild ancestor14,15. The transition from a wild pro-
genitor (also H. annuus) to the cultivated form about 4,000 years ago 
in North America16,17, and later to elite lines during the nineteenth 
and twentieth centuries14,18,19, progressively narrowed the available 
genetic variation for breeding20,21. Fortunately, sunflower is cross-
compatible with many of its wild relatives, which has permitted the 
introgression of beneficial traits from the wild20,22–25. For example, 
the transition from an open-pollinated crop to hybrid production in 
the early 1970s18,26 involved the introgression of (1) a mitochondrial 
variant from Helianthus petiolaris that causes cytoplasmic male ste-
rility to create female (HA) lines27,28; (2) a nuclear restorer of fertil-
ity (Rf) locus from H. petiolaris to produce male (RHA) lines; and 
(3) recessive branching from wild H. annuus to extend pollen pro-
duction of male lines for fertilization29. These features distinguish 
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between female and male lines in cultivated sunflower and facilitate 
commercial hybrid production.

Recently, genome assemblies were published for two sun-
flower cultivars30, which has allowed us to conduct a compre-
hensive analysis of genomic diversity in cultivated sunflower and 
the contributions from wild sunflower relatives. We specifically 
examine the extent, partitioning and ancestry of genetic diversity 
captured in cultivated sunflower by exploring a single-nucleotide 
polymorphism (SNP) data set and pan-genome derived from 
whole-genome sequencing of 287 lines that make up the culti-
vated sunflower association mapping (SAM) population31. The 
SAM population is mainly comprised of modern oil and confec-
tionary (non-oil) cultivars, which were released after the transi-
tion to hybrid breeding in the early 1970s (Supplementary Fig. 1 
and Supplementary Table 10). Next, we use sequence data from 
an additional 17 Native American landraces and 189 genotypes 
representing 11 annual and perennial congeners—including spe-
cies representing the primary (no crossing barriers), secondary 
(some barriers) and tertiary (special techniques required for 
breeding) gene pools—to test whether introgression from wild 
relatives has significantly expanded the gene repertoire of culti-
vated sunflower. Finally, we ask whether these introgressions have 
contributed to enhanced disease resistance, as predicted by breed-
ing records, and identify candidate genes contributing to downy 
mildew resistance.

Results
Allelic diversity and evidence of selection in cultivated sun-
flower. We sequenced 493 sunflower accessions, including 
modern cultivars, landraces and wild relatives yielding a total 
of 11.98 trillion base pairs (bp) of raw sequence (Supplementary 
Fig. 1). Sequence coverage varied between accessions, with culti-
vated accessions (modern cultivars and landraces) sequenced to a 
depth of 5–25×​ and wild accessions to 1–5×​ depth. Variant call-
ing was targeted to genic regions based on the HA412-HO.v.1.1 
assembly30, which was available when this study was initiated. 
HA412-HO is a high-oleic oilseed female line developed by the 
US Department of Agriculture32 and is available from the North 
Central Regional Plant Introduction Station in Ames, IA, USA  
(PI 642777). Although an improved assembly was recently 
reported for another genotype (XRQ, a female oil line developed 
by the Institut National de la Recherche Agronomique (INRA), 
Paris, France), the two assemblies offer equivalent coverage of the 
gene space as estimated by BUSCO33. A total of 10,522,743 raw 
variants were detected across all accessions, of which 5,830,734 
SNPs were kept after filtering.

Among H. annuus accessions, gene diversity declined along the 
domestication gradient (Hewild = 0.12 ±​ 0.16; Helandraces =​ 0.08 ±​ 0.15; 
Hecultivars = 0.06 ±​ 0.13) with significant differences between 
groups (wild–landraces: twelch =​ 17.80, P =​ 1.02 ×​ 10−15; wild–culti-
vars: twelch =​ 27.37, P <​ 2 ×​ 10−16; landraces–cultivars: twelch =​ 14.66, 
P =​ 2.85 ×​ 10−15). The cultivated sunflower data set was further 
filtered using population-level filters and exclusion of lines with 
relatively high levels of heterozygosity, leaving a total of 675,291 
high-quality SNPs across 239 accessions of the SAM population.

Genome-wide diversity was highly structured in the SAM popu-
lation and clearly distinguishes market types (oil versus non-oil) 
and heterotic groups (male versus female) (Supplementary Fig. 2), 
as previously reported based on a smaller SNP set34. Within mod-
ern cultivars, diversity was significantly lower in oil varieties than 
in non-oil varieties (twelch =​ 2.80, P =​ 0.01), and slightly higher 
(although not significantly) in male than female lines (twelch =​ 0.21, 
P =​ 0.83).

Reduced nucleotide diversity is expected in regions affected by 
artificial selection. To identify these regions in the SAM population, 
the genome was screened at a resolution of 1-Mb sliding windows 

(Fig. 1 and Supplementary Fig. 3). Overlaps between the lowest 1% 
quantiles of reduced diversity (π​ per Mb) and a negative Tajima’s D 
score were observed for eight windows on five chromosomes (Ha1, 
Ha5, Ha8, Ha13 and Ha14; Supplementary Table  1). Coalescent 
simulations under a neutral model indicate that overlap between 
low Tajima’s D and low diversity is expected by chance for 0.07% of 
windows, corresponding to 2.5 windows in the observed data set. 
Thus, some of the regions putatively targeted by artificial selection 
may represent false positives. To further support these results, a 
composite analysis, in which all genome scan statistics were com-
bined into a single measure, was conducted using the Mahalanobis 
distance with rank-based P values (MD-rank-P) of each raw score 
(see Supplementary Methods). Overall, results were consistent with 
the overlapping statistics approach and additional candidate regions 
on chromosomes Ha4, Ha9, Ha11 and Ha15 were identified by the 
composite analysis.

To further characterize the putative signal of selection, we tested 
for differentiation and selection between subgroups in the cultivated 
gene pool that were bred to enhance functional diversity and hybrid 
vigour in the case of female and male lines or for different purposes 
in the case of oil and non-oil types, and compared the results with the 
genomic scans for selection within groups. A strong signal of differ-
entiation between males and females was observed on chromosomes 
Ha8, Ha10 and Ha13 (Fig. 1 and Supplementary Fig. 3). These analy-
ses were complemented with subgroup-specific analyses of selection 
using a composite-likelihood ratio test, which further supported 
the signal of selection in male (RHA) but not female (HA) lines on 
chromosomes Ha8, Ha10 and Ha13 (Supplementary Figs. 3 and 4).  
In addition, a composite analysis (MD-rank-P) for each group  
was conducted separately using all corresponding statistics includ-
ing the measure of population differentiation FST (Supplementary 
Tables  2 and 3). Both analytical approaches (overlapping statistics 
and the composite measure of selection) identified a region on chro-
mosome Ha10 where the branching locus was previously mapped34. 
In this region, low diversity was observed in female lines, as well as 
evidence for a stronger selection signal in male lines as expected 
(Ha10: 25–26 Mb, highest MD-rank-P score =​ 1,060). In addition, a 
strong signal of selection was observed in male lines on chromosome 
Ha13 (Ha13: 197–198 Mb, second highest MD-rank-P score =​ 1,043) 
where the fertility restoration locus was previously identified35.

We then tested for differentiation and selection between oil and 
non-oil lines based on overlaps between the lowest 1% quantiles of 
reduced diversity (π​ per Mb), a negative Tajima’s D score and high 
FST at 1-Mb windows (Fig. 1 and Supplementary Fig. 3). These anal-
yses revealed 36 regions with a mean FST >​ 0.26 compared with the 
genome-wide average of FST =​ 0.07. This approach was further com-
plemented with subgroup-specific analysis of selection using a com-
posite-likelihood ratio test, which further supported the signal of 
selection in oil lines, but not in non-oil lines, on chromosomes Ha2, 
Ha9, Ha14, Ha15 and Ha17 (Supplementary Fig. 4). In addition, a 
composite measure approach (MD-rank-P) was conducted across 
all statistics and identified, among the top 1% quantile, 30 candidate 
regions in oil lines and 28 regions in non-oil lines as targets of selec-
tion (Supplementary Tables 4 and 5). The candidate regions overlap 
with 11 oil-related quantitative trait loci (QTLs) previously identified  
on chromosomes Ha1, Ha9, Ha13, Ha14, Ha15 and Ha17 (ref. 30). 
Candidate genes, including those encoding plant lipid transfer 
proteins (Ha2: 205700866 and Ha11: 14452832), were identified 
in regions with the highest FST (FST >​ 0.34) and MD-rank-P values 
(Supplementary Tables 4 and 5 and Supplementary Fig. 3).

The recombination rate varied widely within chromosomes 
in all four subgroups (Supplementary Figs.  5 and 6). Overall, a 
higher median recombination rate (ρ per kb) was observed on 
chromosomes Ha11 and Ha17 across all four subgroups, whereas 
chromosome Ha10, which includes the introgression associated 
with branching in male lines, was characterized by a significantly 
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(Fd.f. = 3 =​ 922, P <​ 0.0001) higher recombination rate among female 
lines (HAmedian =​ 0.36) than among other subgroups (RHAmedian =​ 0.18; 
oilmedian =​ 0.20; non-oilmedian =​ 0.11) in the collection.

Development of the cultivated sunflower pan-genome. Genes in 
the cultivated gene pool that are not represented in the HA412-HO.
v1.1 genome assembly were identified by de novo assembly of reads 
that did not map to the reference sequence. Each of the 287 cultivated 
accessions (cultivated lines and landraces) was assembled indepen-
dently. Altogether, 420,624 sequences with a minimum length of 
200 bp were assembled across all accessions with an N50 of 986 bp. 
After a clustering step to remove redundancy, 114,164 sequences 
were obtained with an N50 of 1,323 bp. This set of sequences was 
aligned to the HA412-HO reference assembly to remove sequences 
that were already present but had previously failed to align. A total 
of 17,061 de novo-assembled genes were absent from the reference 
genome and passed all filtering steps (see Supplementary Methods). 
Annotating this set of genes using the annotations available for 
the HA412-HO reference genome and the plant protein database 
indicated that 5% were complete genes (that is, cover >​90% of the 
predicted protein length). When combined with previously anno-
tated genes in the reference genome, 61,205 genes were obtained, 
which comprise the cultivated sunflower pan-genome. However, 
this is probably an underestimate of the true pan-genome owing to 
the possible combining of close paralogues. Indeed, our approach 
estimates 47,848 genes in the XRQ reference rather than the 52,232 
protein-coding genes reported by Badouin et al.30.

Next, sequences from all cultivated accessions were mapped to 
the ensemble of genes represented in the pan-genome. After fil-
tering hits with low alignment scores (bit-score <​ 200, alignment 
length <​ 150 bp), low-confidence or redundant annotations and 
genes encoding unknown proteins, a total of 45,302 genes were 
kept, of which 2,700 are de novo-assembled genes (Fig. 2).

We used these 45,302 well-characterized genes to explore the 
presence or absence of variation across the cultivated gene pool 
(see  Supplementary Methods). The majority of genes (32,917 
(72.7%)) represent so-called core genes that occur in >​95% of the 
accessions in the cultivated gene pool. The remaining genes seem 
to be dispensable, with 2,464 genes (5.4%) found in <​5% of the 
accessions. Introgressed genes are expected to enrich the rare gene 
fraction among dispensable genes, resulting in a bimodal frequency 
distribution (Fig. 2). Gene expression was evident for 70% of dis-
pensable genes based on available transcription data36, suggesting 
that most dispensable genes are functional.

To test how well the pan-genome represents the gene pres-
ence–absence diversity across the cultivated sunflower gene pool, 
a saturation analysis was conducted. Results indicate saturation of 
gene accumulation after about 60% of accessions are included in the 
analysis, although rare genes continue to be added at a slower rate as 
more accessions are added (Supplementary Fig. 9).

Identifying wild introgressions and their potential functional 
role. To identify potential introgressed genes identified in each  
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cultivated accession and assign them to a wild donor, a comprehen-
sive comparison of gene sequences between each of the 17 Native 
American landraces, 189 wild accessions and 270 accessions of the 
cultivated SAM population was conducted for the 45,302 genes 
using BLAST. After filtering hits, results were summarized in a 
matrix, which allowed us to determine the likely ancestry of each 
gene in the cultivated sunflower pan-genome. Although the number 
of individuals sequenced varied across the putative donor species 
(Supplementary Figs.  1 and 2), introgression assignments accord 
closely with expectations based on known genetic relationships and 
breeding records rather than with sample size. As anticipated, the 
majority of hits (66.3%) corresponded to the primary gene pool, 
wild H. annuus, followed by Helianthus argophyllus (sister to H. ann-
uus), H. petiolaris and Helianthus neglectus in the secondary gene 
pool, with 4.7%, 2.9% and 2.3% of the hits, respectively (Fig. 3a). 
Hits from each of the remaining eight species were found to be  
<​1%. In all, 10.6% of the pan-genome seems to derive from the 
secondary gene pool. Wide variation was observed between culti-
vated lines for introgression intensity due to the breeding history. 
For example, the accession SAM207 (PI_619204, RHA 419) was 
previously reported37 as being highly introgressed due to crossing  
with H. argophyllus and was shown to harbour a large number  
of H. argophyllus introgressions by gene assignment analysis 
(Supplementary Table 11). However, these results should be viewed 
with caution as the BLAST approach does not distinguish between 
the retention of ancestral polymorphism and introgression38. Thus, 
some false positives are likely.

To determine whether the gene repertoire of cultivated sunflower 
has expanded owing to introgression, we asked whether any of the 
~45,000 genes validated across the cultivated gene pool were absent in 
Native American landraces from which modern cultivars arose, but 
present in one or more wild species. A total of 636 such genes were 
found across the cultivated gene pool (Fig.  3b) and further inves-
tigated for their genomic location and possible functional role(s) 
in sunflower improvement (Supplementary Figs.  10–12). Overall, 
introgressed genes from wild species were dispersed across all  

chromosomes. Among the genes identified as introgressions, 15 were 
de novo-assembled genes not found in the reference genome assembly 
HA412-HO.v1.1. Despite their absence from the reference genome, 
linkage disequilibrium between these genes and neighbouring loci 
could potentially indicate their genomic physical position. Thus, we 
tested for linkage disequilibrium between SNPs in the SAM popu-
lation and the presence or absence of the de novo-assembled genes 
(Supplementary Fig. 11). Significant associations (P <​ 1.5 ×​ 10−7) were 
identified for 14 of the 15 genes. Likely genomic locations (based on 
the strongest association) are provided in Supplementary Table 8.

To validate these results, we analysed admixture in the subset of 
239 highly inbred SAM lines versus three wild species (29 H. annuus  
accessions, 29 H. petiolaris accessions and 10 H. argophyllus acces-
sions) for which we had sufficient sequence data to implement 
PCAdmix39, a principal component analysis-based approach for 
inferring patterns of mixed ancestry along chromosomes. The 
PCAdmix analysis indicated that approximately 9% of the cultivated 
gene pool derives from introgression with the secondary gene pool, 
which is similar to that estimated from the more comprehensive 
BLAST comparison (above), and introgressed regions detected by 
the two approaches largely overlap (81%). Conversely, some intro-
gressed regions that the BLAST analysis assigned to other donor 
species are mistakenly inferred as derived from H. argophyllus, 
H. petiolaris or H. annuus by PCAdmix owing to restriction of the 
analysis to these three species, illustrating the value of including all 
possible donors in admixture analyses.

Next, gene ontology (GO) terms were determined for the 636 
genes to infer their potential functional role in sunflower improve-
ment. Among the 140 biological process categories found, 25 cat-
egories were significantly enriched (Supplementary Fig. 12). These 
include categories related to biotic stress response, such as response 
to biotic stimulus (Fisher’s exact test =​ 10.953, P =​ 0.003), defence 
response (Fisher's exact test =​ 4.764, P =​ 0.028) and chitinase activ-
ity (Fisher’s exact test =​ 10.737, P =​ 0.017). These results are con-
sistent with reports from sunflower breeding programmes that 
crosses involving wild species have been most commonly employed 
to introduce disease resistance genes into modern sunflower culti-
vars25. As expected, if introgressions were driven by artificial selec-
tion, the average recombination rate (ρ) was reduced by 64% for 
introgressed genes relative to all other genes (note that recombi-
nation rates could not be tested for 134 of 636 introgressed genes 
because of insufficient SNP density).

Identification of resistance genes to downy mildew. To further 
test whether introgression from wild relatives has contributed to 
improved disease resistance in modern cultivars, we conducted a 
genome-wide association study (GWAS) for downy mildew resis-
tance using the SAM population (Supplementary Fig. 13). Seedlings 
from all lines in the SAM population were inoculated with 
downy mildew spores and the level of susceptibility was recorded 
(see  Supplementary Methods). To identify genomic regions asso-
ciated with downy mildew resistance, we searched for associations 
in the SNP data set using a GWAS framework (Fig. 4). The mixed 
linear model used in the analysis included correction for population 
structure (Supplementary Fig. 7) using the first four eigenvectors as 
covariates, and the kinship matrix between accessions as a random 
effect (Supplementary Fig. 14). Inflation of P values was well con-
trolled (λ​ =​ 1.003), and an adjustment of the significance threshold 
to account for multiple comparisons was set at 2.9 ×​ 10−7 by sim-
pleM and 1.5 ×​ 10−7 by permutation tests.

Seven significant associations with downy mildew resistance 
were found (Fig. 4 and Supplementary Table 9), four of which passed 
both significance thresholds (<​1.5 ×​ 10−7) and three that passed only 
the simpleM threshold (<​2.9 ×​ 10−7). Note that there are two inde-
pendent associations on Ha13 and three on Ha17 (Supplementary 
Table 9). Candidate genes underlying significant associations with 
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downy mildew resistance are listed in Supplementary Table 9 and 
include, for example, a Tify 9-like protein gene (TIFY9) and a syn-
taxin gene (SYP132). Other SNP associations did not pass the sig-
nificance thresholds corrected for multiple comparisons, although 
a strong signal coupled with elevated linkage disequilibrium was 
observed, suggesting that the multiple test correction may be overly 
conservative. These associations and underlying genes are reported 
in the Supplementary Information, as they may be of interest to 
other researchers and sunflower breeders (Supplementary Table 9).

Discussion
Genetic diversity is required for populations to respond to natu-
ral and/or artificial selection. Until recently, responses to selec-
tion were thought to result exclusively from changes in frequencies 
of sequence variants. However, it is now recognized that closely 
related individuals often vary in other genomic features that may 
also underlie selective responses9–11. Sunflower is armed with a 
substantial amount of genetic variation despite domestication and 
improvement bottlenecks in the past 4,000 years14,16–19. This may be 
a consequence of its broad geographical range, large effective popu-
lation size, outcrossing mating system and, as discussed below, the 
widespread use of hybridization and introgression during improve-
ment23,26. Here, we provide a new perspective on genetic diversity in 
cultivated sunflower by analysing sequence polymorphisms (SNPs) 
and gene content variation (that is, the pan-genome) across the cul-
tivated gene pool.

Analyses of the SNP data recovered the four main categories of 
sunflower cultivars (male oil, male non-oil, female oil and female 
non-oil), as expected. In addition, using various genome scan 
approaches, we were able to identify regions of the genome that 
were affected by artificial selection across all lines, as well regions 
that have been subjected to divergent selection between groups. For 
example, as expected, male and female lines are most differentiated 
at the branching locus on chromosome Ha10 and the male fertil-
ity restoration locus on chromosome Ha13, which are the two loci 
required to implement hybrid breeding programmes26.

Analyses of the SNP data also permitted inferences about the 
phylogenetic origins of most (80%) of the sequence diversity in 
the modern cultivated lines that make up the SAM population. 
Approximately two-thirds of gene sequences in the SAM population 
seem to derive from the primary gene pool (wild H. annuus) and 
10.6% from the secondary gene pool (other wild species that form 
partially fertile hybrids with cultivated sunflower). Previous analy-
ses of transcriptome sequences estimated that, on average, intro-
gressions cover 10% of modern cultivar genomes26, which is similar 
to the estimates provided here. Dissection of expression records 
previously reported by Badouin et al.30 for the XRQ genotype 
(Supplementary Information) indicates that introgressed genes have 
higher expression levels in ovaries than non-introgressed genes, but 
the opposite pattern was observed in leaves and seeds, and no dif-
ferences were seen for eight other tissues (Supplementary Fig. 17b). 
Thus, introgression from wild species has contributed importantly 
to the sequence and functional diversity found in sunflower.

We also found considerable variation in gene content across 
cultivated sunflower genomes, with more than one-fourth of the 
pan-genome comprising ‘dispensable’ genes. These results are com-
parable with the Brassica oleracea and Brachypodium distachyon 
pan-genomes in which 20% and 27% of genes were identified as 
dispensable, respectively5,40. Although the expression profiles of 
dispensable genes were not tested explicitly here, over two-thirds 
of dispensable genes had expression records reported by Badouin 
et al.30. Possibly, the proportion of dispensable genes is overesti-
mated due to low sequencing depth for some samples. However, 
we suspect that including non-coding regions in the analysis would 
further increase the dispensable fraction of the genome, because 
non-coding sequences are less likely to be maintained by selection. 

In addition, ~5% of the genes in the pan-genome were classified as 
unique; that is, found in <​5% of the accessions. Further analysis of 
the pan-genome revealed that 636 genes (~1.5%) arose exclusively 
via introgressions from wild relatives during improvement. Thus, it 
is clear that introgression has increased both the SNP diversity and 
the gene repertoire of cultivated sunflower.

The sunflower breeding literature indicates that sunflower 
wild relatives are frequently tapped by breeders to increase toler-
ance to various environmental stresses, especially common sun-
flower diseases, such as downy mildew, white mould and rust, 
and so on25. Gene annotations and the associated ontologies are 
consistent with the focus of breeders on disease resistance, in that 
genes associated with biotic stress are over-represented among the  
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Fig. 4 | Genome-wide association mapping of downy mildew resistance 
in the SAM population. a, Manhattan plot for genome-wide association of 
downy mildew resistance using the 675,291 SNP data set. The corrected 
significance threshold at 5% using the simpleM algorithm is indicated by 
the horizontal blue line and the permutation-based threshold is indicated 
by the horizontal red line. b–d, Zoomed-in view on genomic regions 
(25 kb) where the three most significant hits, based on the association 
test conducted with EMMAX, were identified on chromosomes Ha8 
(b), Ha13 (c) and Ha17 (d). Each plot includes genomic coordinates, 
the Manhattan plot in which the blue horizontal line corresponds to 
the simpleM significance threshold, the location of genes in the region 
(green) and the level of linkage disequilibrium (LD) between SNPs (colour 
scale on the right).
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introgressed gene fraction. These findings are similar to earlier 
reports in maize, in which introgressions from wild relatives were 
associated with changes in pigmentation and trichome density that 
are thought to improve tolerance to highland conditions41. Likewise, 
in Brachypodium defence-related genes were enriched among the 
dispensable fraction of the pan-genome40.

Our high-resolution genomic data for the SAM population are 
also expected to yield new and more precise information regard-
ing the genetic basis of traits of interest, including resistance to 
both biotic and abiotic stress. Owing to the conservative approach 
taken to correct for multiple comparisons, only seven QTLs passed 
one or both significance thresholds, although additional sugges-
tive QTLs were also observed. In the present paper, for example, 
GWAS detected associations for downy mildew resistance on 
chromosomes Ha1, Ha6, Ha8 and Ha13 that had been previously 
identified in biparental populations42, as well as new associations 
on chromosomes Ha3, Ha11, Ha16 and Ha17. Several associations 
overlap with introgressions from wild species, including the Ha11 
and Ha16 QTLs, which seem to be derived from wild H. annuus and 
H. neglectus, respectively. Within genomic regions associated with 
downy mildew resistance, several putative pathogen defence genes 
were identified, including a disease resistance gene in the NBS-LRR 
family on chromosome Ha3, a pathogen-responsive signalling gene 
(encoding lectin receptor-like kinase43) on chromosome Ha6, genes 
encoding a B-box zinc finger44, Tify 9-like protein36, AHBP-1B45 and 
a mitogen-activated protein kinase46 on chromosome Ha8, and a 
gene encoding serine/threonine-protein kinase47 on chromosome 
Ha13. In addition, the direct defence genes encoding the syntaxin 
SYP132 (ref. 48) and GDSL-motif lipase49 were detected on chro-
mosomes Ha11 and Ha16, respectively. Although the association 
between these genes and downy mildew resistance was determined 
based on SNPs called within them, we cannot rule out the possi-
bility that closely linked regions are causative because of linkage  
disequilibrium in the SAM population.

Our results provide further support for the contribution of intro-
gressions from wild species to disease resistance in sunflower and 
add to a growing literature on the value of primary and secondary 
wild germplasm in crop improvement41,50–52. We further show that 
such introgressions not only enhance allelic diversity but they also 
increase the total number of genes in a crop pan-genome. Thus, the 
gene content of an introgression is not necessarily predictable from 
a reference sequence.

Despite its clear utility to understanding crop genetic variation, 
assembling a pan-genome is still challenging analytically. The con-
servative approach and stringent homology cut-offs used in the pres-
ent study probably reduced the comprehensiveness of the assembled 
sunflower pan-genome. Likewise, the low sequencing depth avail-
able for some genotypes no doubt limited both the number and the 
completeness of genes identified. To more fully represent the genes 
in the pan-genome, as well as to capture presence–absence variation 
in non-coding regions and repetitive sequences, it will be neces-
sary to increase sequencing depth and refine the homology search 
strategy53. Advances in long-read sequencing have the potential to 
alleviate some of the challenges associated with pan-genome assem-
bly, especially the sensitivity and specificity of structural variation 
detection54. Given the ongoing advances in sequencing technology, 
we suspect that a pan-genome approach will become standard in 
comparative genomics studies, facilitating a more complete view of 
the genetic variation represented in a gene pool, especially novel 
genomic components associated with traits of interest.

Methods
Resequencing the SAM population and wild relatives. Sunflower germplasm 
collections comprise ~40,000 cultivated and wild accessions globally and served 
as the basis for selecting accessions in this study. Altogether, 493 accessions were 
chosen, including 287 accessions from the cultivated SAM population, which 
captures ~90% of the allelic diversity in the cultivated sunflower gene pool31 

(Supplementary Fig. 1 and Supplementary Table 10). All lines can be obtained 
from the USDA’s National Plant Germplasm System and/or the INRA. Most of 
the accessions in the SAM population are modern cultivars that were released 
after the transition to hybrid breeding in the early 1970s and include 51 female 
confectionary lines, 64 female oil lines, 25 male confectionary lines and 66 male 
oil lines. However, the population also includes a small number of open-pollinated 
varieties and a few lines that are not easily classified (Supplementary Fig. 1  
and Supplementary Table 10). In addition to the SAM population, 17 Native 
American landraces and 189 wild accessions were chosen for sequencing, 
including the following 11 annual and perennial congeners: H. annuus from 
the primary gene pool; H. petiolaris, H. neglectus, H. argophyllus, H. anomalus, 
H. debilis, H. paradoxus and H. praecox from the secondary gene pool; and  
H. divaricatus, H. grosseserratus and H. giganteus representing the tertiary gene 
pool (Supplementary Table 10 and Supplementary Figs. 1 and 2). Genomic DNA 
was extracted from each accession as described in Mandel et al.34, libraries were 
prepared following Illumina’s TruSeq protocol and sequencing was conducted on 
the Illumina HiSeq platform with 100-bp paired-end reads. Sequence coverage 
varied between accessions, in which cultivated accessions (modern cultivars 
and landraces) were sequenced to a coverage of 5–25×​ and wild accessions were 
sequenced to 1–5×​.

Calling SNPs across all samples. Raw sequence data generated for each accession 
in the SAM population were processed and cleaned using Trimmomatic v.036  
(ref. 55) and aligned to the HA412-HO.v.1.1 reference assembly. Alignment of clean 
reads was conducted with an aligner developed by SAP SE56, which is optimized to 
use available main memory for faster indexing, minimize the cache miss ratio to 
improve performance and optimize parallel code execution. Alignment files were 
processed to remove potential PCR duplicates using picard v.2.5 (ref. 57). To reduce 
the computational intensity of the variant calling process, we targeted genic regions 
and a 2.5-kb flanking sequence. Before variant calling, low-quality alignments and 
reads mapping to highly repetitive regions were removed.

Variants including SNPs and insertions or deletions (indels) were called 
across all 493 accessions in one batch using a haplotype-sensitive algorithm 
implemented in the open source software FreeBayes58. The cultivated gene 
pool was further filtered to include only highly inbred accessions from the 
SAM population and to remove variants with a quality of<​30, >​30% missing 
data, minor allele frequency of <​5%, minimum genotype depth of 1 read and 
maximum of 30, maximum observed heterozygosity of 10%, and strand-biased or 
direction-biased alleles. The sum of depth of coverage across all accessions was 
set between 1,000 and 2,300 to further remove outliers in the depth distribution. 
In addition, SNPs found close to a gap (<​5 bp) and indels were removed from the 
data set using vcffilter59 and vcftools60.

Following this set of filters, a panel of high-quality and trustable SNPs across 
239 highly inbred accessions from the SAM population was obtained for the 
GWAS analysis and genome scans. Genomic scans were calculated in 1-Mb sliding 
windows and included nucleotide diversity (π​), Tajima’s D, SNP density, selective 
sweeps and recombination rate (see Supplementary Methods). These genomic 
scans were applied to the SAM population data set and subgroups corresponding 
to oil versus non-oil varieties, male (RHA) and female (HA) lines, representing 
the four major breeding types in sunflower. In addition, genomic scans for 
differentiation (Weir–Cockerham FST) were conducted between subgroups (that is, 
male versus female and oil versus non-oil).

Assembly and annotation of the cultivated sunflower pan-genome. The HA412-
HO.v1.1 (ref. 30) reference sequence and annotations were used to guide the 
assembly of the cultivated sunflower pan-genome using a conservative approach12. 
Following the alignment of reads from each accession in the cultivated gene pool 
to the reference, unmapped and poorly mapped reads (defined as an edit distance 
of ≥​8 for a read pair) were extracted. These reads were assembled de novo for 270 
accessions that were well classified and characterized from the SAM population 
and an additional 17 landraces independently using the Ray assembler61 with 
a range of k-mers between 13 and 51 to enable the assembly of contigs from 
low-coverage data. All sequences were blasted against the UniVec database62 to 
remove potential contaminants. Assembled contigs shorter than 200 bp were 
removed from further analysis. Remaining contigs were aligned to the reference 
genome to identify sequences that were reassembled and are already present in 
the reference. Contigs with >​75% similarity along >​75% of the alignment length 
were considered as represented in the reference genome and were excluded from 
further analysis. These steps were executed for each accession in the cultivated 
gene pool separately. Next, all contigs from all accessions were pooled into one data 
set that represents all dispensable sequences not found in the reference genome. 
To cluster overlapping sequences and avoid redundancy, the pooled data set was 
processed using the software CD-HIT63 with a similarity threshold of 95%, keeping 
the longest contig at each cluster. Remaining sequences were searched against the 
NCBI nr database to look for potential assembled contaminants. A total of 526 
sequences were identified as potential contaminants and excluded from further 
analysis. To annotate the non-redundant sequences from the pooled data set, 
annotations of the HA412-HO reference genome were integrated with the plant 
protein database64 to create a more complete annotation database. Annotations for 
the non-redundant de novo-assembled sequences were determined using blastx 
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with a minimum bit-score threshold of 200 to ensure a high quality of annotations. 
Only the best hit was kept while giving priority to the HA412-HO hits associated 
with each query. The final outcome of this process was a set of annotated genes 
that corresponded to the cultivated sunflower pan-genome, including core and 
dispensable genes.

To determine the full genetic repertoire for each of the cultivated accessions, 
raw reads from each accession were aligned to the assembled pan-genome. Genes 
that were not annotated with high confidence were removed from further analysis 
and overlapping annotations were merged based on protein identity, keeping the 
longest sequence for each gene. To obtain a uniform and comparable similarity 
score for each gene in each accession, alignments were assembled to contigs using 
the mpileup command in SAMtools65 followed by the seq command in seqtk66 to 
convert the fastq file to fasta. Recovered sequences were aligned to the pan-genome 
using blastn and filtered at a minimum bit-score of 200, minimum alignment 
length of 150 bp and minimum identity of 75%. For each sequence, we verified 
that the alignment and pan-genome identities matched, and the corresponding 
bit-score of the best hit was kept as a measure of similarity between a gene in each 
accession to the pan-genome sequences.

Localizing the genomic position of the unmapped de novo-assembled genes. 
To localize the genomic position of de novo-assembled genes that are absent from 
the reference genome, we took advantage of linkage disequilibrium between these 
genes and SNPs of known genomic location in the SAM population. First, the 
identity matrix generated for the pan-genome was transformed into a presence–
absence matrix, in which a similarity score was considered as presence (1) and a 
missing score as absence (0). Unmapped, de novo-assembled genes were extracted 
from the presence–absence matrix and were associated with SNPs in a genome-
wide association framework. To associate SNPs with the presence or absence of 
genes, we used the software EMMAX67 with the genes presence–absence score 
as ‘phenotypes’, SNP calls as genotypes and kinship among the cultivated lines 
calculated as identity by state as a random effect in the mixed linear model. 
To correct the false-positive rate due to multiple comparisons, the simpleM 
algorithm68 was used at a significance level of 5%.

Identifying the wild source of introgressed genes in the pan-genome. Two 
different approaches were used to identify the potential wild source of genes 
comprising the cultivated sunflower pan-genome. In the first approach, genes 
of each of the 287 cultivated accessions (270 cultivated lines and 17 landraces) 
were compared to whole-genome sequences generated for the 189 wild accessions 
representing 11 congeneric species. Comparisons were conducted following 
the same procedure described above for the pan-genome in the cultivated gene 
pool. Briefly, raw reads from wild accessions were cleaned, trimmed and aligned 
to the cultivated sunflower pan-genome. A consensus sequence was called for 
each wild accession alignment separately. A comprehensive comparison of 
sequences from all wild accessions to all cultivated accessions was performed with 
blastn and results were filtered using a minimum bit-score of 200, a minimum 
alignment length of 150 bp and a minimum of 75% identity. Of the remaining 
hits, only the best hit was kept as a potential source of introgression. The pairwise 
identity matrix was further filtered to remove wild introgressions supported by 
only one cultivated accession. To distinguish gene sequences brought into the 
cultivated gene pool by domestication versus those that were introgressed during 
improvement, landrace accessions were used as a reference. All gene sequences 
found in landraces were considered as derived from domestication and were 
removed from downstream analyses.

As a validation approach, we used the SNP data set called across all accessions 
to identify introgressions from H. argophyllus and H. petiolaris, with wild H. annuus 
included as the most probable source of variation. Analyses were conducted using 
the software PCAdmix39. PCAdmix is an algorithm designed to infer local ancestry 
by classifying and projecting segments of SNPs in the admixed genomes onto the 
basis of ancestral individuals and smoothing the signal using the Viterbi algorithm 
within an HMM framework. Analysis was restricted to three wild species and 
the SAM population as the admixed individuals because increasing the number 
of wild species populations reduced the overall number of overlapping SNPs, 
causing a major reduction in the number of segments that could be considered 
in the analysis. Prior to the PCAdmix analysis, variants were filtered to remove 
low-quality SNPs (Q <​ 30), strand-biased or direction-biased alleles, SNPs close to 
a gap (<​5 bp) and indels. In addition, all SNPs were phased in Beagle v4.1 (ref. 69) 
for each species separately. No pruning was set in the analysis, and recombination 
rates were inferred within the PCAdmix analysis. Assignments of segments to wild 
donors were converted to bed format and plotted using the Sushi package70 in R.

GOs. To elucidate the possible functional role of the introgressed genes from wild 
congeners, we used the GO annotations available for the HA412-HO genome 
for genes found in the reference genome, and the GOA database71 for de novo-
assembled genes. GO biological processes were clustered and visualized using the 
web-server REVIGO72. REVIGO’s clustering algorithm finds a single representative 
GO term for clusters of semantically similar GO terms, thus resulting in a reduced, 
non-redundant GO term set (that is, superclusters). The size of each supercluster 
reflects the term group abundance. Fisher’s exact test was implemented in R to test  

for enrichment of GO terms among introgressed genes compared to the  
pan-genome as a whole.

Downy mildew resistance experiment. Plasmopara halstedii race 734 (accession 
1916 from Gnadenthal, Manitoba) was provided by R. Khalid (AgCanada, Morden, 
Manitoba, Canada). The isolate was propagated in susceptible cultivar HA89 for 
further infections. Seeds from the SAM population were sterilized, germinated and 
infected using the whole-immersion method73–75. Seeds were scarified and dehulled 
to prevent contamination or concomitant infections and also to synchronize their 
germination speed. Four-day-old healthy seedlings, with a developed root of about 
1–2-cm long, were infected with fresh P. halstedii suspension from race 734 at a 
concentration of 20,000 zoosporangia per ml and were eventually transferred to 
soil, watered daily and grown in a growth chamber under controlled conditions 
(19 °C, 16 h of light) for 10 days. Finally, plants were incubated in 100% relative 
humidity for 24 h in darkness and scored for susceptibility.

This experiment was conducted in a randomized block design with three 
replicates. Each block included a treated plant and a control for each accession. As 
a measure of each plant’s response to inoculation with downy mildew, the following 
parameters were scored: (1) the percentage of the cotyledon area covered by spores; 
(2) spore density in a single cotyledon measured as the total number of sporangia 
normalized to the cotyledon area; and (3) the percentage of leaf area covered by 
spores. Finally, resistant plants were considered as those showing no sign of infection.

Genome-wide association mapping of downy mildew resistance. GWAS was 
performed to identify SNPs associated with downy mildew resistance in the SAM 
population. For the resistance phenotype, we used the quadratic normalization 
of the per cent spore density, which provided a robust quantitative estimate of 
resistance/susceptibility. GWAS was performed using the software EMMAX67 with 
genotype as a fixed effect, and the kinship matrix between accessions calculated as 
identity by state was included as a random effect in a mixed linear model. To correct 
for population stratification, principal component analysis was computed from the 
genotypic data using the SNPRelate package76 in R, and the first four eigenvectors 
were used as covariates in the association mapping model. False-positive inflation 
due to multiple comparisons was corrected with the simpleM algorithm and 
500,000 permutations, both at a genome-wide significance level of 5%.

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
All raw sequence data are stored in the Sequence Read Archive (SRA) under 
Bioproject PRJNA353001 for cultivars and PRJNA397453 for wild and landrace. 
Accession numbers for each sample are listed in Supplementary Table 10. 
The SNP data set in vcf format, pan-genome sequences in fasta format and 
genome scan statistics in bed files format can be downloaded from https://www.
sunflowergenome.org/.
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