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Abstract

The genetic basis of floral symmetry is a topic of great interest because of its effect on pollinator behavior and,
consequently, plant diversification. The Asteraceae, which is the largest family of flowering plants, is an ideal system in
which to study this trait, as many species within the family exhibit a compound inflorescence containing both bilaterally
symmetric (i.e., zygomorphic) and radially symmetric (i.e., actinomorphic) florets. In sunflower and related species, the
inflorescence is composed of a single whorl of ray florets surrounding multiple whorls of disc florets. We show that in
double-flowered (dbl) sunflower mutants (in which disc florets develop bilateral symmetry), such as those captured by
Vincent van Gogh in his famous nineteenth-century sunflower paintings, an insertion into the promoter region of a
CYCLOIDEA (CYC)-like gene (HaCYC2c) that is normally expressed specifically in WT rays is instead expressed throughout the
inflorescence, presumably resulting in the observed loss of actinomorphy. This same gene is mutated in two independent
tubular-rayed (tub) mutants, though these mutations involve apparently recent transposon insertions, resulting in little or no
expression and radialization of the normally zygomorphic ray florets. Interestingly, a phylogenetic analysis of CYC-like genes
from across the family suggests that different paralogs of this fascinating gene family have been independently recruited to
specify zygomorphy in different species within the Asteraceae.
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Introduction

The evolution of floral symmetry (i.e., the transition between

actinomorphy and zygomorphy) is of great interest to plant

biologists due to its apparent effect on plant-pollinator interactions

and, as a consequence, rates of speciation [1–4]. Actinomorphy

(i.e., radial symmetry) is typically considered to be the ancestral

state [5,6], with zygomorphy (i.e., bilateral symmetry) having

arisen several times during the evolution of flowering plants

[1,6,7]. Clades with zygomorphic flowers have been shown to be

significantly more speciose than their sister clades with actino-

morphic (i.e., radially symmetric) flowers [4], presumably because

zygomorphy increases pollinator specificity, thereby setting the

stage for the evolution of reproductive isolation. Given the above,

it has been suggested that the evolution of zygomorphy has played

an important role in plant diversification [6,8].

The Asteraceae is a particularly interesting family in which to

investigate the genetics of floral symmetry. Beyond being generally

recognized as the most speciose family of flowering plants [9,10], a

large number of species within this family exhibit a radiate flower

head, containing both actinomorphic and zygomorphic florets

within the same inflorescence. For example, in sunflower

(Helianthus annuus L.), the wild-type (WT) inflorescence is composed

of multiple whorls of actinomorphic (disc) florets surrounded by a

single whorl of zygomorphic (ray) florets (Figure 1A and 1B; Figure

S1). The recent elucidation of phylogenetic relationships amongst

the major clades of the Asteraceae [11,12] suggests that ray florets

have evolved more than once during the diversification of this

family, with a number of tribes and genera containing mixtures of

radiate and discoid taxa. Ray florets have also been shown to

increase pollination success in species across the family [13–15].

The genetic control of floral symmetry has been investigated in

several species (e.g., [16,17]). This has typically been found to

involve CYCLOIDEA (CYC)-like TCP transcription factors and, at

least in Antirrhinum, their interplay with MYB-like transcription

factors [18]. Within the Asteraceae, CYC-like genes have since

been shown to play a role in determining floral symmetry in two

different species (Gerbera and Senecio [19,20]). The CYC-like gene

family in sunflower was previously found to be twice the size (at

least ten members) of that of any other species that had been
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investigated to date (but see [21] for a more recent report of a

similarly large number of CYC-like genes in the Dipsacaceae), and

members of this gene family are known to have experienced

positive selection and expression divergence following their

duplication within the sunflower genome [22].

Sunflower mutants that show alterations in floral symmetry

have been previously described (e.g., [23–26]), and provide an

opportunity to investigate the genetic basis of this trait. For

example, in double-flowered (dbl) mutants, the normally actinomor-

phic disc florets are elongated and vary from strongly zygomorphic

towards the outside, to weakly zygomorphic towards the center of

the inflorescence (Figure 1C and 1D; Figure S1), more or less

reminiscent of WT ray florets. WT rays are sterile whereas WT

discs are male and female fertile. In contrast some ray-like disc

florets in the dbl mutant do not produce pollen even though

anthers are present. In contrast, in tubular-rayed (tub) mutants, the

normally zygomorphic ray florets are radialized and contain both

stigmas and pollen-producing anthers (Figure 1E and 1F; Figure

S1). Interestingly, the dbl mutants bear a strong resemblance to the

phenotype captured in Vincent van Gogh’s famous 19th century

sunflower paintings (Figure 1G), which have become a mainstay of

van Gogh exhibits worldwide.

To further our understanding of the genetics and evolution of

floral symmetry in the Asteraceae, we investigated the relationship

between members of the CYC-like gene family and the aforemen-

tioned floral mutants in sunflower. Upon discovering that both the

historically-important dbl phenotype as well as the tub phenotype

are conditioned by independent mutations in the same member of

the sunflower CYC-like gene family, we performed a phylogenetic

analysis of CYC-like genes from across the breadth of the family.

The results of this analysis suggest that different members of this

fascinating gene family have been independently recruited to

specify zygomorphy in species across the Asteraceae.

Results

Performing controlled crosses with double-flowered sunflower

cultivars is difficult due to reduced pollen production and difficulty

in accessing the stigmas. Therefore, we initiated our investigation

of floral symmetry in sunflower by crossing a ‘weak’ (i.e.,

intermediate) dbl individual (cultivar Primrose) to a WT line

(cultivar NMS373) (Figure 2). F1 plants exhibited either weak dbl

or WT phenotypes in a ratio not significantly different from 1:1

(x2 = 0.67, df = 1, P = 0.414), consistent with the effects of a single

gene with codominant alleles. Three weak dbl F1 plants were

selfed, and scoring of the progeny as WT, weak dbl, or fully dbl

(hereafter fully dbl plants are referred to simply as dbl) revealed

1:2:1 (WT:weak dbl:dbl) segregation in all three families (all

Bonferroni-adjusted P.0.05; Fisher’s combined probability

P = 0.09). Because modifier loci for other dbl lines have been

reported [24], and because the phenotypic boundary between

weak dbl and dbl plants is not always discrete, these families were

also tested against a 3:1 ([dbl+weak dbl]:WT) ratio and did not

differ significantly from the expectation (P.0.05; Fisher’s

combined probability P = 0.21).

Figure 1. Floral symmetry in sunflower and the similarity of the double-flowered mutant to van Gogh’s sunflowers. Entire
inflorescences (A, C, E) and individual florets (B, D, F) from wildtype (A, B), double-flowered (C, D) and tubular (E, F) sunflower individuals. Florets are
arranged left to right from the inner florets to the outer florets. (G) ‘‘Sunflowers (Still Life: Vase with Fifteen Sunflowers)’’ by Vincent van Gogh (1888)
with double-flowered heads pointed out with arrows. Panel G was obtained from Steve Dorrington on flickr (available at http://flic.kr/p/8SsPYb) and
is distributed under the terms of the Creative Commons Attribution 2.0 Generic (CC BY 2.0) License.
doi:10.1371/journal.pgen.1002628.g001

Author Summary

The evolution of flower shape and symmetry is of great
interest to plant biologists, because it can affect pollinator
behavior. Species in the flowering plant family Asteraceae
exhibit flower heads that can contain both bilaterally and
radially symmetric flowers. In this study, we identify a
CYCLOIDEA-like gene that is responsible for determining
flower symmetry in sunflower. Mis-expression of this gene
causes a double-flowered phenotype, similar to those
captured in Vincent van Gogh’s famous nineteenth-
century paintings, whereas loss of gene function causes
radialization of the normally bilaterally symmetric ray
florets. Interestingly, this gene is not orthologous to the
CYCLOIDEA-like gene responsible for floral symmetry in
other members of the Asteraceae, providing evidence of
the parallel recruitment of different members of the same
gene family for the same function.

Independent Recruitment of CYCLOIDEA Genes
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Self-pollination of four of the WT F1 plants revealed a novel

phenotype (tub; tubular-ray florets; Figure 1E and 1F) amongst the

resulting progeny. In this case, the phenotypic ratios were not

significantly different from 3:1 (WT:tub) (all P.0.05; Fisher’s

combined probability P = 0.10), consistent with the effects of a

single gene with a recessive, mutant allele. Selfing of the tub plants

resulted in only tub offspring. Moreover, no double-flowered plants

with tubular ray florets were observed in any of the F2 families,

suggesting that the dbl and tub phenotypes are allelic, or due to the

effects of tightly linked genes. This view is supported by the

observation that crosses between dbl and tub plants resulted in weak

dbl offspring, and that self-pollination of two of these individuals

resulted in a 3:1 ([dbl+weak dbl]:tub) segregation ratio (both

P.0.05). The weak dbl phenotype therefore appears to correspond

to dbl/WT (or dbl/tub) heterozygotes.

Genetic mapping in these Primrose6NMS373 F2 families (see

Materials and Methods) revealed that both traits map to the same

region of sunflower linkage group nine, coincident with the

position of three CYCLOIDEA-like (CYC) genes mapped in an

earlier study (HaCYC2b, HaCYC2c, and HaCYC2e; [22]). One of the

three CYC-like genes (HaCYC2c) showed sequence polymorphism

in this population, and exhibited complete cosegregation with the

tub phenotype in two WT:tub populations. All three genes showed

sequence polymorphism in a second Primrose6WT population

(WT cultivar Moulin Rouge) and, upon mapping, were shown to

cosegregate with each other and with the dbl phenotype.

Because of their role in determining floral symmetry in other

species, these CYC-like genes are good candidates for being

involved in specifying the zygomorphy of WT ray florets. Previous

analyses demonstrated that all three CYC-like genes are expressed

in floral tissues [22]; however, one of them (HaCYC2c) exhibits ray-

specific expression while the other two (HaCYC2b and HaCYC2e)

are expressed across multiple floral tissues including rays, discs,

ovules and stigmas [22].

Sequencing from the WT parent (NMS373), as well as true-

breeding dbl and tub lines, revealed that HaCYC2b and HaCYC2e

have identical, uninterrupted coding sequences in all three types,

suggesting that these genes are not responsible for the observed

phenotypes. In contrast, the sequences of HaCYC2c from both the

dbl and tub lines (alleles HaCYC2c-dbl and HaCYC2c-tub, respec-

tively) contained a 999 bp insertion upstream of the start codon,

and the HaCYC2c-tub allele contained an additional 1190 bp

insertion in the coding region (Figure 3).

The 999 bp upstream insertion showed no hallmarks of being a

transposon or other mobile DNA element. In contrast, inspection

of the sequence of the 1190 bp insertion in HaCYC2c-tub revealed

a 5 bp target-site duplication (TSD), the presence of identical

324 bp long terminal repeats (LTRs), a primer binding site, and a

polypurine tract, suggesting that this insertion is a terminal repeat

retrotransposon in miniature (TRIM) [27]. Both mutations in

HaCYC2c affect gene expression, causing a deviation from the WT

ray-specific expression of HaCYC2c, as follows. In the dbl flower

head, HaCYC2c is expressed in all florets across the inflorescence

(i.e., in both disc and ray florets), whereas reduced HaCYC2c

expression was detected across the head in tub mutants (Figure 4A).

It thus appears that the 999 bp insertion affects a ‘ray-floret-

specific’ element in the promoter region of HaCYC2c, as evidenced

by the expression across all floret types in both the dbl and tub lines.

The TRIM insertion apparently reduces expression of HaCYC2c in

tub mutants, and also results in the production of a premature stop

codon, presumably preventing its WT function. In contrast,

expression patterns for HaCYC2b were generally similar across

genotypes (Figure 4B) and, while HaCYC2e showed some

expression variation across genotypes (Figure 4C), there was no

clear evidence of disrupted gene expression resulting in the

observed mutant phenotypes. For example, inner and central discs

(ID and CD) showed low expression (similar to WT) in dbl and sdbl

mutants despite their ray-like appearance, and the Primrose and

Figure 2. Crossing design employed to investigate the genetics of floral symmetry in sunflower with representative phenotypes
shown only for the F2. Inferred genotypes are given in parentheses where ‘+’ indicates wild-type.
doi:10.1371/journal.pgen.1002628.g002

Independent Recruitment of CYCLOIDEA Genes
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Ames3288 tub mutants (see below for details on Ames3288) did not

show consistent changes relative to WT. These findings suggest

that CYC2c is required for zygomorphy in normal WT ray florets,

with ectopic expression in disc florets (i.e., HaCYC2c-dbl) causing

them to become zygomorphic in dbl mutants, and greatly reduced

expression coupled with a truncated mRNA (i.e., HaCYC2c-tub)

causing a loss of zygomorphy in tub mutants.

To further investigate this possibility, HaCYC2b, 2c, and 2e

were sequenced from a second line with tubular ray florets

(USDA accession Ames3288). Whilst HaCYC2b and 2e sequences

were identical between Ames3288 and the Primrose tub mutant

line (and WT), HaCYC2c contained a unique mutation (HaCYC2c-

3288; Figure 3C). In this second tubular-rayed line, a putative

retrotransposon (identified on the basis of a 5 bp TSD and

578 bp identical LTRs) had inserted 55 bp downstream of the

stop codon, interrupting the intron in the 39 untranslated region

(UTR), and resulting in an almost complete loss of expression

(Figure 4A; see below for additional discussion). When this line

was crossed with individuals homozygous for the Primrose-

derived HaCYC2c-tub mutant allele, all resulting offspring (at least

five from each of four independent crosses) exhibited tubular rays

(i.e., there was no complementation), presumably due to non-

complementary knock-out mutations at HaCYC2c. We therefore

conclude that the mutations are indeed allelic, and that mutations

in the HaCYC2c gene are responsible for the dbl and tub

phenotypes.

HaCYC2c was also sequenced from three other double-flowered

sunflower lines. Two of these, Sungold Tall and Chrysanthemoides

[24], both harbor the HaCYC2c-dbl allele with the upstream

insertion. The third, Teddy-bear, was found to be heterozygous

for the same alleles that were present in the original cv. Primrose

individual (i.e., HaCYC2c-dbl and HaCYC2c-tub). When additional

Teddy-bear plants were grown and self-pollinated, we observed

some individuals with the dbl phenotype and others with tubular

ray florets. Hence, the HaCYC2c-dbl and HaCYC2c-tub alleles

appear to be segregating in this line in the same manner as in

Figure 3. Schematic diagram of the mutant alleles of HaCYC2c. The bent arrow and star indicate the start and stop codons respectively.
Insertions are indicated by open triangles.
doi:10.1371/journal.pgen.1002628.g003

Independent Recruitment of CYCLOIDEA Genes
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Primrose. Expression of HaCYC2c in Chrysanthemoides follows the

same overall pattern as Primrose-dbl, confirming our observation of

mis-expression of this mutant allele in a different genetic

background (Figure 4A).

In order to further examine whether the three insertions

(HaCYC2c-dbl, HaCYC2c-3288 and HaCYC2c-tub) are responsible

for the mutant phenotypes, we carried out a polymerase chain

reaction (PCR) screen of a diverse collection of 108 sunflower lines

that exhibit WT floral morphology (see Materials and Methods).

This screen revealed that all three insertions are indeed unique to

the respective mutant lines (i.e., they were never observed in WT

lines), providing further evidence that the HaCYC2c gene plays a

critical role in proper floret development, with mis-expression and

loss of function of this gene giving rise to the dbl and tub

phenotypes, respectively.

To better understand the diversification of the CYC-like gene

family within the Asteraceae, CYC2-like genes were isolated from

other radiate members of the family, a basal species with

actinomorphic and zygomorphic florets and a member of the

sister family, the Calyceraceae, with only actinomorphic flowers

(see Materials and Methods), and gene trees were constructed

(Figure 5). The focus here was on the CYC2-like subfamily because

it is CYC2 genes (as opposed to CYC1 or CYC3) that are responsible

for specifying zygomorphy in a wide range of species [3,16–20].

The gene trees suggest that the sunflower HaCYC2c gene, which is

responsible for specifying ray floret formation, is paralogous to

(i.e., not the direct ortholog of) the Senecio and Gerbera CYC-like

genes that have previously been shown to influence floral

symmetry in these other members of the Asteraceae (Figure 5).

The Gerbera locus controlling floral symmetry is GhCYC2, which is

not orthologous to HaCYC2c; rather, this gene is part of the

HaCYC2e-like clade, along with one of the two Senecio floral

symmetry genes, RAY2. Although there is only weak support for

some branches in these trees, the second Senecio symmetry gene,

RAY1, also falls outside of the well-supported HaCYC2c clade,

grouping instead with HaCYC2d.

Figure 4. Quantitative RT–PCR results for the expression analysis of HaCYC2c in sunflower. Tissues are ray florets (R), outer discs (OD),
intermediate discs (ID) and central discs (CD) and the sunflower lines, with phenotypes in parentheses, are given under the graph. Values were
normalized to actin, and are graphically scaled to NMS373 (i.e., WT) ray florets, with error bars depicting the standard error of four biological
replicates.
doi:10.1371/journal.pgen.1002628.g004

Figure 5. Maximum likelihood and Bayesian gene trees showing relationships between CYCLOIDEA gene sequences from the
Asteraceae. (a) Maximum likelihood, and (b) Bayesian gene trees. Nucleotide sequences of the conserved TCP and R domains and the intervening
sequence were used in the phylogenetic reconstructions. Inset depicts the relationships between the species investigated (according to Panero and
Funk, 2008). CYC2 sequences were either PCR amplified from members of the Asteraceae (see Materials and Methods) or taken from Genbank
(underlined). Previously published sequences are named according to the original publications. For genes isolated herein, species names are
abbreviated as follows: Acicarpha (At), Berkheya (Bp), Callistephus (Cc), Dasyphyllum (Dd), Gazania (Gaz), Gerbera (Gh), Helianthus (Ha), and Senecio (Ss)
and are named according to the subgroup (a, b, c, d, or e) in which they fall based on the sunflower paralog names. Loci playing a role in ray floret
symmetry (refs [19,20]; this study) are indicated in bold and denoted with an asterisk. Bootstrap values (a: 100 replicates) are shown where greater
than 70%, and Posterior Probabilities (b) where greater than 0.95.
doi:10.1371/journal.pgen.1002628.g005

Independent Recruitment of CYCLOIDEA Genes
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Discussion

The evolution of floral zygomorphy has been proposed as a key

innovation in angiosperm evolution, with elevated divergence rates

thought to be the result of adaptation to specialized pollinators

[1,2,28]. As noted above, zygomorphy has evolved on multiple

occasions, and the role of CYCLOIDEA-like genes in specifying

zygomorphy has been implicated in a number of these cases [3,16–

20]. The connection between CYC-like genes, floral symmetry, and

pollination syndromes is further evidenced by instances in which

changes in CYC gene number and/or expression patterns correlate

with alterations of floral symmetry [29–34], and at least one case

in which the loss of CYC-like genes (and their downstream targets)

caused a reversion from zygomorphic to actinomorphic flowers

and a concomitant change in pollination syndrome from insect to

wind pollination [35].

In sunflower, which has both actinomorphic and zygomorphic

florets within the same inflorescence (Figure 1), our results indicate

that HaCYC2c is necessary for floral zygomorphy, with individuals

that are homozygous for a loss-of-function mutation (either due to

a premature stop codon or to a reduction/loss of expression of

HaCYC2c) exhibiting actinomorphic ray florets. Moreover, the

historically important double-flowered mutation, which was captured

by van Gogh in his famous late-19th century sunflower paintings,

appears to be conditioned by a different mutation in the same

gene. In this case, ectopic expression of HaCYC2c across the entire

inflorescence results in the transformation of normally actinomor-

phic disc florets into zygomorphic ray-like florets.

It has previously been shown that CYCLOIDEA-like genes that

control zygomorphy act in a dorsal-specific manner, repressing cell

growth in this region and allowing outgrowth of the ventral petals

[16,17]. The phenotypes of the tub and dbl mutants are therefore in

line with this mode of gene action. That is, loss of function (tub)

causes radialization of the ray florets, whereas expression in disc

florets (dbl) results in ventralization. It is interesting that, in the tub

lines, the outer florets were not simply radialized ray florets; rather,

they were effectively transformed into elongated disc florets, as

indicated by the presence of stigmas and pollen-producing anthers.

This result, along with the observed transformation of disc florets

in dbl mutants, suggests that HaCYC2c is responsible for specifying

ray vs. disc floret identity, and not simply required for zygomorphy

of the ray florets – though the situation is clearly complex, as the

radialized ray florets still exhibit elongation and the zygomorphic

disc florets in dbl mutants still produce anthers and stigmas.

Given that all four of the dbl lines investigated herein carried the

same mutant allele (HaCYC2-dbl), it seems likely that this mutation

arose just once, and has been incorporated into multiple cultivars

because it produces a desirable floral morphology. In contrast,

sunflower lines that exhibit tubular ray florets appear to have

arisen at least twice. In one case (HaCYC2c-tub), a transposon

insertion into the coding region of this gene appears to have

resulted in reduced expression and production of a premature stop

codon, resulting in radialization of the ray florets. The second case

(HaCYC2c-3288) involves the insertion of a different transposon

into an intron in the 39 UTR of this gene, resulting in a loss of gene

expression and radialization of the ray florets. In fact, previous

studies have revealed that introns in UTRs can play a vital role in

gene regulation [36,37]; hence, the interruption of an intron in a

UTR has the potential to disrupt gene expression, as appears to be

the case here.

It is noteworthy that the HaCYC2c-dbl and HaCYC2c-tub alleles

both contain the 999 bp upstream insertion resulting in a loss of

ray-specific expression, and differ only by the presence (HaCYC2c-

tub) or absence (HaCYC2c-dbl) of the TRIM insertion into the

coding region (Figure 3). This finding implies that the HaCYC2c-tub

allele is derived from HaCYC2c-dbl, and further suggests that the

family of elements to which the CYC2c TRIM insertion belongs

may still be active in the sunflower genome. The apparent recency

of this insertion is further evidenced by the fact that the element in

question appears to be intact, complete with identical LTR

sequences. In contrast, the HaCYC2c-3288 allele appears to be

derived from a WT HaCYC2c allele. The high level of sequence

similarity between the coding regions of WT alleles and HaCYC2c-

3288, along with the identical LTR sequences, likewise suggest

that this was an evolutionarily recent insertion event.

We previously suggested [22] that the large number of CYC-like

genes in sunflower was due in part to a whole genome duplication

event at the base of the Heliantheae (i.e., the sunflower subfamily)

[38]. These duplications are, however, clearly shared with other

members of the family outside the Heliantheae, suggesting that the

radiation of this gene family occurred earlier in the evolution of

the Asteraceae. Moreover, the apparent absence of CYC2b, c, d,

and e genes from Acicarpha and CYC2b, d, and e genes from

Dasyphyllum (Figure 5) suggests that some members of this gene

family may have been lost in certain lineages, or that some

duplications occurred since the split between Gerbera and

Dasyphyllum, giving rise to the 2b, d, e clade. A more thorough

investigation of the genetics of floral symmetry in the basal

members of the family is clearly warranted.

Interestingly, inspection of the CYC2-like gene tree from across

the Asteraceae (Figure 5) reveals that the sunflower HaCYC2c gene

is not the direct ortholog of the CYC2 genes that have been shown

to be responsible for specifying zygomorphy in two other members

of the Asteraceae (i.e., Senecio and Gerbera). Rather, HaCYC2c

appears to be paralogous to these genes, suggesting that the

evolution of zygomorphy within the Asteraceae, which is thought

to have occurred multiple times [11,39], involved the parallel co-

option of different members of the same gene family for an

analogous function.

It is possible that other, closely related CYC-like genes have

functions similar to HaCYC2c. In this context, the role of HaCYC2e

is of particular interest because: (1) HaCYC2e and HaCYC2c both

co-segregate with the mutant phenotypes, and (2) HaCYC2e

appears to be the true sunflower ortholog of RAY2 and GhCYC2

(Figure 5b), which are known to influence zygomorphy in Senecio

and Gerbera. In this light, it is noteworthy that HaCYC2e is much

more broadly expressed than HaCYC2c in the WT inflorescence

([22] and Figure 4; i.e., the former is expressed in all floral tissues

examined, albeit at low levels near the center of the disc, while the

latter is ray-specific), and that HaCYC2e expression patterns did not

clearly correlate with the mutant phenotypes. Moreover, the

upstream and coding sequences of HaCYC2e were identical

between WT, dbl, and tub individuals, whereas for HaCYC2c,

mutations that gave rise to altered expression patterns and/or

predicted protein sequences were observed. Nonetheless, a better

understanding of the possible role of HaCYC2e in floral

development in sunflower awaits further investigation. We can,

however, conclude that HaCYC2c is a key transcription factor in

the developmental pathway resulting in the development of

zygomorphic ray florets in sunflower.

The parallel evolution of adaptive traits has been documented

many times [40]. In some cases, such parallel phenotypic changes

have been shown to result from parallel molecular changes

[41,42]. In other cases, however, it has been shown that parallel

phenotypic evolution results from the evolution of different genes

to perform the same function, suggesting that independent gene

co-option may be an important mechanism for the origin of

evolutionary novelty [43–46]. In contrast to the co-option of
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unrelated genes/proteins to fill the same functional role in

independent evolutionary lineages, the co-option of different, but

related genes (i.e., those with ancestral similarity, such as different

members of the same gene family) has been less well documented.

It has, however, recently been shown that O2-transporting

hemoglobins have evolved independently from different members

of the globin gene superfamily in jawed vs. jawless vertebrates

[47]. While CYC2-like genes have been implicated in controlling

zygomorphy in several plant species (reviewed in [48]), our work

provides evidence that subfunctionalization of different paralogs

within this gene family has resulted in the independent evolution of

an analogous adaptive trait in evolutionarily-independent lineages.

Materials and Methods

Plant Material and Crosses
Most of the sunflower (Helianthus annuus L.) lines used in this

research were obtained from the USDA North Central Regional

Plant Introduction Station (NCRPIS; Ames, IA). The exceptions

were Chrysanthemoides [24], which was kindly provided by Dr.

Claudio Pugliesi (Università di Pisa, Italy) and Moulin Rouge,

which was obtained from Johnny’s Selected Seeds (Winslow,

Maine, USA). USDA Plant Introduction (PI) numbers for the

wild-type parent and mutant lines are as follows: NMS373 (PI

597362), Primrose (PI 490320), Ames3288 (PI 650394), Teddy-

bear (PI 650838), Sungold Tall (PI 490322). The 108 WT lines

that were screened for insertions in HaCYC2c (see below) are listed

in Table S1. When crosses were made, florets were emasculated

and heads were bagged pre- and post-pollination to prevent pollen

contamination. Individuals were scored as wild-type (WT), weak

double-flowered (weak dbl), fully double-flowered (dbl), or tubular-

rayed (tub) based on the morphology of their florets.

Genetic Mapping
Microsatellite markers showing linkage with the three pheno-

types (i.e., WT vs. dbl; WT vs. tub) were first identified by

extracting DNA from individuals of the three phenotypes using

MagAttract 96 or DNeasy DNA extraction kits (Qiagen, Valencia,

CA, USA), bulking equal amounts of DNA from ten individuals

per phenotype (WT, dbl, and tub) and genotyping the bulked

samples using multiplexed polymerase chain reaction (PCR)

amplification [49]. Alleles were visualized using GeneMapper

(Applied Biosystems, Carlsbad, California, USA). Both phenotypes

showed an association with marker ORS844 on linkage group

(LG) nine, so additional markers (ORS1265, ZVG39, CRT250,

and ORS176; also from ref. 49) from this LG were genotyped in

96 F2 progeny from a WT6dbl cross and 192 F2 progeny from two

WT6tub crosses, all of which were derived from the original NMS

3736Primrose cross (Figure 2). Genetic mapping was carried out

using Mapmaker 3.0 (Lander et al. 1987; Lincoln et al. 1992)

following ref. 22. The HaCYC2c-tub insertion was also mapped in

the two Primrose6NMS373 F2 families segregating for WT:tub

phenotypes (n = 192 F2 plants) and complete co-segregation

between the HaCYC2c-tub allele and the tub phenotype was

observed.

Because the alleles of both HaCYC2b and HaCYC2e were

identical in the parents of the aforementioned mapping popula-

tions, these genes could not be re-mapped in these crosses.

Therefore, single nucleotide polymorphism (SNP) markers were

developed for all three loci in an independent WT (Moulin

Rouge)6Primrose mapping population (n = 195 F2 plants) where

they showed sequence differences. Loci were PCR amplified in

5 ml reaction volumes containing 2 ng genomic DNA, 1 mL 16
LightCycler 480 Genotyping Master mix (Roche Diagnostics,

Indianapolis, IN, USA), 1.0 mM of excess primer, 0.5 mM of

limiting primer, and 0.2 mM of both the sensor and anchor probes

(Table S2). PCR was performed in the Light Cycler 480 (Roche)

for 45 cycles with 10 sec 95uC, 15 sec at 55uC, and 20 sec at

72uC. The final melting cycle was performed by raising the

temperature to 95uC for 3 min, lowering the temperature to 40uC
for 3 min, and increasing the temperature to 85uC with

continuous fluorescent acquisition 5 times/degree. The fluores-

cence signal (F) was plotted in real time against temperature (T) to

produce melting curves for each sample, and the melting curves

were converted to negative derivative curves of fluorescence with

respect to temperature (-dF/dT) by the LightCycler Data Analysis

software (Roche).

DNA Sequencing and Allele Screening
HaCYC2-like genes were PCR-amplified (see primer sequences

in Table S2) and sequenced using previously established protocols

(e.g., ref. 50). Insertions in CYC2c were found in the mutant

genotypes that were initially screened (Primrose and Ames3288;

Genbank accession numbers HQ891026–HQ891029). HaCYC2c

was also sequenced from three additional dbl mutants (Sungold

Tall, Chrysanthemoides, and Teddy-bear; Genbank accession num-

bers JF489909–JF489913). Primer pairs (Table S2) specific to all

three insertions (for each insertion, one primer was placed inside

the insertion, with the other being placed in the gene itself) were

then used to PCR amplify and screen a diverse panel of 108 WT

cultivated sunflower lines [51] for presence or absence of each

insertion. DNA extraction was carried out as above and PCR

carried out as previously described [50]. Amplicons were

visualized via agarose gel electrophoresis and staining with

ethidium bromide. Presence or absence of a PCR product

indicated presence/absence of an insertion. A positive control

PCR was carried out for each individual using another pair of

primers specific to HaCYC2c to protect against the possibility of

false negatives.

Expression Analyses
Gene expression analyses were carried out using quantitative

reverse-transcriptase (qRT)-PCR on RNA isolated from WT

(NMS373), dbl, tub, Ames3288 and Chrysanthemoides individuals.

Briefly, petal tissue was collected for each genotype/floret type

combination at a stage when the sunflower head was fully open.

Tissues were collected from four different floret types, namely: ray

florets, outer discs, intermediate discs (halfway between the outer

and central florets), and central disc florets. RNA was extracted

using the guanidium isothiocyanate method followed by isolation

using the RNeasy Mini Kit (Qiagen, Valencia, CA) using

previously established protocols [22]. Synthesis of cDNA was

performed using 500 ng of total RNA after removal of genomic

DNA using Qiagen on-column DNase treatment. ImProm II

reverse transcriptase (Promega Corporation, WI, USA) and oligo

dT (15) primers were used to perform reverse transcription in a

30 ml reaction volume. The cDNA was diluted with 80 ml of water

for all gene expression analyses. All the qRT-PCR analyses were

performed using an Eppendorf realplex2 real-time PCR system

(Eppendorf, Hauppauge, NY) with primers in Table S2. The

reaction conditions were as follows: 50uC for 2 min; 95uC for

10 min; 40 cycles of 95uC (15 s), 59uC (20 s) and 68uC (30 s).

Melt-curve analyses were performed after the PCR. A single

distinct peak was observed for both the target (HaCYC2b, 2c, and

2e) and control (actin) genes indicating the specific amplification of

a single product. Relative expression (scaled against WT ray

florets) was calculated using the Pfaffl method [52].
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Gene Discovery and Phylogenetic Analysis
Degenerate PCR primers were employed as previously

described [22] to amplify the central portion (i.e., the region

between the TCP and R domains) of the CYC-like genes from

other members of the Asteraceae (Berkheya purpurea [subfamily

Cichorioideae], Callistephus chinensis [Asteroideae], Dasyphyllum

diacanthoides [Barnadesioideae], Gazania hybrida [Cichorioideae],

Gerbera hybrida cultivar [Mutisioideae], Senecio squalidus [Asteroi-

deae]) as well as Acicarpha tribuloides (Calyceraceae; outgroup).

Seeds of most of these species were obtained from Chileflora

(www.chileflora.com), Chiltern Seeds (www.chilternseeds.co.uk),

or the USDA (see above). The exceptions were Senecio (seed from

Richard Abbott, University of St. Andrews) and Acicarpha (leaf

material from Leigh Johnson, Brigham Young University). PCR,

cloning, and sequencing were carried out as before [50]. These

species were chosen to represent a broad cross-section of the

family. However, we focused on radiate species where possible.

The exceptions are Dasyphyllum, with an inflorescence made up of

actinomorphic disc and zygomorphic bilabiate florets, and

Acicarpha, which approximates an inflorescence with only actino-

morphic flowers.

The CYC-like gene family in the Asteraceae is made up of three

subfamilies, and the focus here was on CYC2-like genes. Therefore,

CYC clones from the above reactions that showed similarity to

CYC2 genes from Helianthus were further characterized via genome

walking (as described previously [22]) to obtain the entire TCP

and R domains. A nucleotide alignment was next obtained for the

conserved TCP and R domains as well as the intervening region

using ClustalW2 [53] followed by manual adjustment such that

indels were in multiples of three. Maximum likelihood analysis was

then carried out using PhyML [54] with 100 bootstrap replicates

and Mr. Bayes [55] to produce gene trees.

Accession Numbers
Sequence data have been deposited into the Genbank DNA

database (www.ncbi.nlm.nih.gov/genbank) under accession num-

bers HQ891026–HQ891029 and JF489909–JF489913 (HaCYC2c),

JF489906–JF489908, JQ594983 (HaCYC2b), JF489914–JF489916,

JQ594982 (HaCYC2e), and JF299240–JF299257 (Asteraceae CYC2

sequences).

Supporting Information

Figure S1 Floret morphology in the WT mutant (Primrose dbl

and Primrose tub) lines. Ovaries and stigmas have been removed

from the florets, which have been split laterally so that the anthers

can be seen. Scale bars (10 mm) are indicated in white. In each

panel outer florets are on the left, and the innermost florets on the

right.

(PDF)

Table S1 108 diverse sunflower lines used in the PCR assay for

insertions in Hacyc2c. All lines are available from the USDA

(http://www.ars-grin.gov/npgs/index.html) with the exception of

SF33 and SF230 available from the French National Institute for

Agricultural Research (INRA).

(PDF)

Table S2 Primer sequences used throughout this study.

(PDF)
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