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Abstract

Analyses aimed at identifying genes that have been targeted by past selection provide a powerful means for investigating
the molecular basis of adaptive differentiation. In the case of crop plants, such studies have the potential to not only shed
light on important evolutionary processes, but also to identify genes of agronomic interest. In this study, we test for
evidence of positive selection at the DNA sequence level in a set of candidate genes previously identified in a genome-wide
scan for genotypic evidence of selection during the evolution of cultivated sunflower. In the majority of cases, we were able
to confirm the effects of selection in shaping diversity at these loci. Notably, the genes that were found to be under
selection via our sequence-based analyses were devoid of variation in the cultivated sunflower gene pool. This result
confirms a possible strategy for streamlining the search for adaptively-important loci process by pre-screening the derived
population to identify the strongest candidates before sequencing them in the ancestral population.

Citation: Chapman MA, Mandel JR, Burke JM (2013) Sequence Validation of Candidates for Selectively Important Genes in Sunflower. PLoS ONE 8(8): e71941.
doi:10.1371/journal.pone.0071941

Editor: Arnar Palsson, University of Iceland, Iceland

Received May 3, 2013; Accepted July 8, 2013; Published August 26, 2013

Copyright: � 2013 Chapman et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded in part by the U.S. Department of Agriculture (www.usda.gov) National Institute of Food and Agriculture (grant number 2008-
35300-19263) and the National Science Foundation (http://www.nsf.gov) Plant Genome Research Program (grant number DBI-0820451). The funders had no role
in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jmburke@uga.edu

¤ Current address: Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom

Introduction

Identifying the molecular basis of phenotypic differentiation

and understanding the role of selection in producing such

differences is a major goal of evolutionary genetics [1,2]. In the

case of crop plants, strong selection is thought to have produced

the remarkable phenotypic divergence that is commonly observed

between wild and domesticated forms [3,4], and identifying the

causal genes has the potential to facilitate future crop improve-

ment efforts. Numerous QTL mapping and, more recently,

association studies have investigated the genetic basis of domes-

tication-related phenotypes by testing for marker-trait associations

in mapping populations [5–10]. While these studies have been

successful in identifying numerous genomic regions, and some-

times the genes or even causal mutations influencing crop-related

traits [11–15], such approaches have some drawbacks. For

example, these methods require the development and character-

ization of relatively large populations and they also rely on the

presence of segregating variation in order to identify genomic

regions associated with a particular trait. Unfortunately, in some

cases, the appropriate variation may not be available due to the

occurrence of population bottlenecks and/or strong selective

sweeps, and conclusions from such studies are also limited to the

specific phenotypes under study.

A complementary approach to the above map-based methods is

to use patterns of population genetic variation to identify putative

targets of selection in the genome. Strong selection is known to

influence patterns of diversity and, in the case of crop domesti-

cation, the molecular targets of selection are expected to exhibit

reduced polymorphism in the crop gene pool (as compared to

levels in the wild or landrace gene pools) and skewed allele

frequencies relative to non-selected loci [16–19]. Rejection of

the null hypothesis of neutrality provides evidence that the gene

or region of interest has been the target of past selection.

Identifying such loci through their patterns of DNA polymorphism

therefore circumvents the need for creating large mapping

populations and does not limit the loci detected to being involved

in specific phenotypes. While this sort of approach is increasingly

being applied to DNA sequence data – especially thanks to the

availability of next generation sequencing technologies (e.g. [20–

22]) – for which formal molecular evolutionary tests of selection

are available, it has also been applied to large genotypic datasets

[23–25]. In such cases, candidates for loci that have experience

positive (i.e., directional) selection are often identified as those that

have lost a greater than expected amount of diversity in the

derived vs. ancestral populations – i.e., they fall in the extreme tail

of the diversity distribution [26–28]. It is, however, desirable to

couple such outlier-based analyses of genotypic data with

sequence-based molecular evolutionary analyses as a means of

validating the effects of selection and protecting against false

positives (e.g. [29]).

Genotypic scans for selection have been performed in a variety

of crop species [23–25]. In maize, for example, Vigouroux et al.

[25] screened 501 gene-based simple sequence repeats (SSRs) and

demonstrated strong evidence for positive selection in ten genes

during domestication/improvement, making them good candi-

dates for genes underlying agronomic traits. Similarly, Casa et al.

[23] identified numerous genomic regions that may have been

targeted by selection during sorghum evolution based on patterns
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of SSR diversity, though sequence-based analyses later failed to

corroborate these findings, possibly due to the outgroup being too

closely related for the ML-HKA test to be effective [30]. Because

strong selective sweeps, such as those that are thought occur

during domestication, are expected to cause a drastic reduction in

DNA polymorphism, it is notable that two studies of maize have

identified selectively important loci by first ‘pre-screening’ the

derived germplasm (i.e. inbred maize cultivars) to identify loci with

an absence of DNA polymorphism [22,31].

In sunflower, which is a globally-important oilseed crop and also

an important source of edible seeds, Chapman et al. [24] analyzed

492 gene-based SSRs in a stratified sample of wild, domesticated,

and improved sunflower and identified 36 genes with evidence of

selection during either domestication or improvement. Six of these

genes (including three domestication-related and three improve-

ment-related genes) were further investigated using DNA se-

quence-based tests for selection and the effects of selection were

validated in all six cases. Here, we describe the sequencing and

analysis of additional genes from this study to confirm the role of

selection in shaping diversity at these loci, to better understand the

timing of such selection, and to investigate, where possible, the

types of variants differentiating the wild, landrace (also known as

‘primitive’ lines in previous publications), and/or improved alleles.

We further argue that a pre-screening approach similar to that

employed in maize (see above) would help to ‘fast-track’ the

identification of loci bearing the genomic signature of selection

during domestication and/or improvement.

Methods

Genes of interest and PCR primer design
This study focuses on 36 candidates for genes targeted by

selection during sunflower domestication/improvement that were

identified by Chapman et al. [24]. Six of these have previously

been subjected to molecular evolutionary analyses. In the present

study, we attempted to amplify portions of the 30 remaining genes

from a panel of individuals (Table S1) representing eight wild, six

landrace, and six improved sunflower accessions plus an outgroup

(H. petiolaris). This was the same panel of individuals that was used

to investigate patterns of DNA sequence variation in the original

six genes, as well as in an analysis of selection on genes in the fatty

acid biosynthetic pathway (see [24,32]). Briefly, polymerase chain

reaction (PCR) primers were designed by downloading unigene

sequences from the Compositae Genome Project EST database

(http://compgenomics.ucdavis.edu/), comparing them against

genomic sequences from Arabidopsis, rice, grape, and poplar to

infer the likely intron positions, and then using primer3 [33] to

design primers that flanked regions spanning ca. 500–1,000 bp of

coding and non-coding sequence. Due to the short length of a

number of the original unigene sequences, we performed genome

walking to increase the amount of sequence available for our

analyses (see ref. [24]). For nine genes, we were either unable to

recover sufficient sequence information via genome walking, or

were unable to design primers that produced consistent amplifi-

cation across both cultivated and wild sunflower. As a result, we

were left with a total of 27 genes (21 sequenced herein plus the 6

from the previous study) having sufficient data for selection

analyses. Based on the previously inferred timing of selection in the

initial genotypic screen, these included 13 candidate domestication

genes and 14 candidate improvement genes.

Locus amplification and sequencing
Loci were amplified via PCR with each reaction containing 10

ng of template DNA, 30 mM Tricine pH 8.4-KOH, 50 mM KCl,

2 mM MgCl2, 100 mM each deoxynucleotide triphosphate,

0.1 mM each primer, and one unit of Taq DNA polymerase.

PCR conditions used a touchdown protocol to minimise spurious

amplification as follows: initial denaturation at 95uC for 3min; 10

cycles of 30 s at 94uC, 30 s at 65uC (annealing temperature was

reduced by 1u per cycle), and 45 s at 72uC; followed by 30 cycles of

30 s at 94uC, 30 s at 55uC, and 45–90 s at 72uC; and a final

extension time of 20 min at 72uC. Amplification was confirmed

using agarose gel electrophoresis. Primer sequences are listed in

Table S2.

PCR products were treated with 4 units Exonuclease I and 0.8

units Shrimp Alkaline Phosphatase (USB, Cleveland, OH) at 37uC
for 45 min followed by enzyme denaturation at 80uC for 15 min

to prepare for sequencing. BigDye v3.1 (Applied Biosystems) was

used for the DNA sequencing reaction following the manufactur-

er’s protocol, except that a reduced volume of BigDye was used in

each reaction. Unincorporated dyes were removed from the

sequencing reactions via Sephadex clean-up (Amersham), and the

sequences were resolved on an ABI 3730xl (Applied Biosystems).

Where individuals were heterozygous for an insertion/deletion

(indel), the PCR product was cloned into pGEM-T vector

(Promega), transformed into competent Escherichia coli, and PCR-

screened for the presence of an insert. Four or five positive colonies

were then sequenced as above except that vector primers (T7 and

SP6) were used.

Selection analyses
Tests for evidence of positive selection were performed using the

maximum-likelihood (ML) version of the Hudson-Kreitman-

Aguade (HKA; [34]) test (MLHKA; [35]) as previously described

[24]. Parameters required for this test were estimated for each

locus using DnaSP [36]. These included the number of segregating

sites (S), nucleotide diversity (p), number of haplotypes, and

Watterson’s [37] estimate of diversity (h). In order to distinguish

the loss of genetic diversity that is due to the domestication

bottleneck from true events of positive selection, sequence diversity

at each of the 27 genes was compared to that of the seven

putatively neutral genes within the ML-HKA framework. Before

doing this, however, we first tested each of the putatively neutral

loci against the other six loci, as follows. First, a strictly neutral

model was run, followed by a model in which each gene was

compared to the other six genes. These tests were carried out

separately for the wild, landrace, and improved datasets. Two

times the difference in log-likelihoods of the models was then used

in a Chi--square (x2) test with two degrees of freedom to test for

statistical significance. Importantly, none of the neutral loci

showed evidence of selection, establishing their validity as control

loci for the investigation of selection on the candidate genes. Each

of the 27 genes was then tested against the neutral loci using

the approach outline above. By carrying out the tests for wild,

landrace, and improved gene pools separately, we were also able

to investigate the timing of selection (i.e., during domestication vs.

improvement) in cases where selection was detected. The

parameters employed in the ML-HKA analyses are listed in

Table S3 and all previously published and newly generated

sequences have been deposited in Genbank under accession

numbers FJ373512 – FJ373879 and KF159030 – KF159529,

respectively.

Results and Discussion

The process of plant domestication is predicted to result in a

genome-wide reduction in genetic diversity, commonly referred to

as a domestication bottleneck, in the crop gene pool as compared

Selectively Important Genes in Sunflower
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to that of its wild progenitor [31,38]. A further reduction in

genetic diversity can occur as a by-product of the continued

narrowing of the genetic base in more highly improved varieties

[3]. Superimposed on these genome-wide reductions in genetic

diversity are localized losses of diversity owing to the effects of

directional selection during domestication and/or improvement.

As expected, both the neutral control genes and the candidates for

selectively important genes exhibited the highest levels of sequence

diversity (estimated here as Watterson’s h) in wild sunflower and

the lowest levels in the improved cultivars (Table 1; Figure 1). The

landraces, which represent an intermediate stage between wild

sunflower and modern cultivars, exhibited intermediate levels of

nucleotide diversity. Looking across classes, however, it’s clear that

the diversity loss in the landraces was much greater for the

candidate domestication vs. improvement genes. Indeed, the

domestication genes exhibited a ca. 60% loss of sequence diversity

in the landraces as compared to wild sunflower vs. 45% for the

improvement genes. This was, once again, expected based on how

these genes were initially identified/categorized.

Evidence for selection during domestication and/or
improvement

Of the 27 genes that we tested for DNA sequence-based

evidence of selection during domestication and/or improvement

(including 6 from our prior study; [24]), 17 (63.0%) exhibited

statistically significant departures from neutrality in the ML-

HKA tests (P,0.05) in at least one of the comparisons (Table 1;

Figure 2). These 17 genes included 7 of the 13 (54%) candidate

domestication genes (two with marginal [0.05, P,0.1] signifi-

cance during that phase, but significant evidence of selection

during improvement) and 10 of the 14 (71%) candidate

improvement genes. Applying an FDR correction [39] using the

program QVALUE (available from http://genomics.princeton.

edu/storeylab/qvalue/) in the R statistics package (http://www.r-

project.org/) reduced this to ten loci at FDR ,0.05, including four

domestication-related and six improvement-related genes, with a

three additional loci exhibiting marginal significance for selection

during sunflower improvement after FDR correction (0.05,

P,0.10). In all cases, genetic diversity was severely reduced as

compared to the neutral control genes in the selected population(s)

– i.e., landrace and improved for the domestication-related genes

or improved only for the improvement-related genes (Figure 2).

Interestingly, regardless of our initial classification of these

genes, there was a tendency to detect selection more frequently

during improvement vs. domestication. Thus, while our initial

SSR screen suggested a roughly 50:50 split between domestication

and improvement genes, the sequence-based analyses described

herein suggest a bias toward selection during improvement

(Table 1). This difference may, however, be a by-product of

differences in the sampling scheme between the SSR-based and

sequence-based analyses. Notably, we focused our sequence-based

analyses on a set of individuals from six landraces, whereas the

SSR-based analyses utilized population-level sampling from a

total of eight landraces. Given that the sunflower landraces are

genetically quite diverse [24,32,40], a larger sample size in the

initial analyses could have diluted the effects of more divergent

landraces, resulting in significant tests in the wild-landrace

comparisons in the earlier, SSR-based study but not in the present

analysis of sequence diversity. In this context, it is worth noting

that for three of the genes the showed evidence of selection during

improvement in the current study (c1258, c1533 and c2963), the

Maiz Negro landrace harbors an allele that was divergent from all

other landrace and improved lines. Re-analysis without this line

resulted in significant tests for selection during domestication for

c1258 and c2963 (P#0.001). For c1533, the outgroup allele only

exhibited one SNP relative to the most common allele in cultivated

sunflower, potentially impacting our ability to detect selection.

Similarly, in the study of sorghum domestication referenced above,

low divergence of the out group from sorghum was one of the

reasons given for the small number of loci that showed departure

from neutrality [30].

While our analyses provide clear statistical evidence of the role

of selection in shaping sequence diversity in a number of genes, it

must be kept in mind that the effects of selective sweeps can extend

into linked, neighbouring regions. It thus remains possible that the

genes showing evidence of selection are linked to the actual targets

of selection as opposed to having been targeted by selection

themselves. In this light, it is worth noting that the initial studies of

linkage disequilibrium (LD) in sunflower found evidence for

relatively rapid decay [41,42], suggesting that positive signatures of

selection should be very tightly linked to the targeted variants.

Figure 1. Average (± SE) genetic diversity (Watterson’s h [37]) in wild, landrace, and improved sunflower based on the sequencing
of presumptively neutral genes as well as the candidates for selectively-important genes.
doi:10.1371/journal.pone.0071941.g001
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More recently, however, evidence of localized islands of extended

LD has emerged [9] and selection targeting a fatty acid desaturase

gene has been shown to have resulted in a sweep spanning $100

kb [32]. As such, the genes identified herein as showing evidence

of positive selection during the evolution of cultivated sunflower

may simply be demarcating selectively important genomic regions.

A better understanding of the functional significance of these genes

awaits further investigation and/or experimentation.

For the loci with significant evidence of selection after applying

the FDR correction, we identified SNPs that differentiated the

alleles in different gene pools, specifically looking for what

appeared to be novel variants or fixed, non-synonymous

differences. Two loci (c0019, and c5666) exhibited at least

one fixed non-synonymous mutation in the improved gene pool

that was found to be at low frequency (,20%) in the wild.

Two additional loci (c1649 and c2963) had at least one non-

Table 1. Genetic diversity (Watterson’s h [37]) for seven neutral genes (N), 13 putative domestication genes (D), and 14 putative
improvement genes (I) sampled from wild (Wild), landrace (Land) and improved (Imp) sunflower populations.

Watterson’s h ML-HKA P-values

Type Locus Wild Land Imp Wild Land Imp

N c0025 Aleurain-like protease 0.0239 0.0150 0.0138 0.1937 0.2979 0.1760

N c1111 Protein kinase family protein 0.0094 0.0006 0.0019 0.2125 0.6362 0.9305

N c1351 Chlorophyll binding protein 0.0138 0.0180 0.0111 0.7964 0.7016 0.3830

N c2016 DNAJ heat shock N-terminal domain-containing 0.0301 0.0189 0.0162 0.7361 0.8933 0.3601

N c2307 Glyceraldehyde-3-phosphate dehydrogenase 0.0050 0.0055 0.0062 0.8146 0.7105 0.7910

N c5369 S-adenosylmethionine synthetase 0.0111 0.0097 0.0052 0.8648 0.8339 0.7842

N c5456 Vacuolar H+-ATPase subunit A 0.0185 0.0101 0.0054 0.2398 0.3041 0.8800

AVG 0.0160 0.0111 0.0086

D c1357 Pentatricopeptide repeat-containing protein 0.0107 0.0056 0.0056 0.6688 0.3820 0.2101

D c1533 Microtubule-associated protein 0.0216 0.0096 0.0004 0.5902 0.9072 0.0151**

D c1649 Putative protein 0.0093 0.0087 0.0000 0.9578 0.9188 0.0029**

D c1666" Putative Ser/Thr protein kinase 0.0134 0.0139 0.0000 0.1076 0.0823* 0.0452**

D c2873 11S globulin precursor 0.0047 0.0025 0.0000 0.8921 0.5324 0.1425

D c2963 BEL1-related homeotic protein 0.0127 0.0018 0.0000 0.8280 0.1798 0.0007**

D c3115 Nicotinate phosphoribosyltransferase-like protein 0.0027 0.0000 0.0000 0.1256 0.9774 0.9065

D c5898" Unknown protein 0.0162 0.0015 0.0008 0.7698 0.0744* 0.0269**

D c4973" Chorismate synthase 0.0084 0.0000 0.0000 0.9106 0.0053** 0.0062**

D G13K16 No significant similarity 0.0095 0.0033 0.0026 0.8837 0.2176 0.1488

D H4B03 Kinesin-related protein (MKRP2) 0.0132 0.0030 0.0003 0.0570 0.2177 0.5660

D M23M12 CONSTANS 3 0.0138 0.0052 0.0016 0.2596 0.2188 0.9425

D N21O05 Thiol protease 0.0029 0.0000 0.0000 0.1685 0.0053** 0.0050**

AVG 0.0107 0.0042 0.0009

I c1144 Calmodulin-binding protein 0.0024 0.0023 0.0000 0.7282 0.5471 0.0093**

I c1236 NSL1 (NECROTIC SPOTTED LESIONS1) 0.0119 0.0068 0.0000 0.5399 0.5683 0.0051**

I c1258 11S globulin precursor 0.0107 0.0066 0.0000 0.9099 0.4632 0.0000**

I c1406" Protein kinase-like protein 0.0219 0.0194 0.0000 0.2071 0.1630 0.0050**

I c1700 Mitochondrial dicarboxylate carrier 0.0213 0.0136 0.0084 0.8200 0.9343 0.5555

I c1774 No significant similarity 0.0106 0.0109 0.0033 0.9305 0.8681 0.3536

I c0019 Unknown protein 0.0250 0.0183 0.0000 0.1993 0.1024 0.0036**

I c1921" Dof27 0.0154 0.0088 0.0010 0.9483 0.6381 0.0104**

I c2150 NADP-specific glutatamate dehydrogenase 0.0321 0.0076 0.0000 0.3002 0.5340 0.0450**

I c2588 ATIDD11 (INDETERMINATE-DOMAIN11) 0.0053 0.0087 0.0000 0.3958 0.8769 0.0017**

I c3070 Gly-rich RNA binding protein 0.0088 0.0067 0.0077 0.9702 0.7709 0.7452

I c5666 Peroxidase 0.0237 0.0057 0.0000 0.3859 0.4254 0.0192**

I J22O06 Unknown protein 0.0264 0.0031 0.0000 0.3104 0.3827 0.0010**

I L2K11 SDL-1 protein 0.0038 0.0040 0.0024 0.0879 0.0457** 0.1359

AVG 0.0157 0.0088 0.0016

Six previously analysed genes are indicated by ". P-values are given for the results of the ML-HKA test for each candidate gene in each of the three populations. *
Significant at P#0.1,**P#0.05. Comparisons that remained significant after false discovery rate correction are indicated in bold (FDR ,0.05) and underlined (0.05, FDR
,0.1).
doi:10.1371/journal.pone.0071941.t001
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synonymous polymorphism (and several non-coding variants) that

showed fixed differences between the wild and improved gene

pools. Finally, for one locus (c5898), a single cultivated line

(RHA801) contained an amino acid insertion that was not present

in the sampled landrace lines, but was present at low frequency in

the wild, possibly suggesting introgression from the wild into

this line. While it is possible that some of these non-synonymous

differences could be adaptive, it must be kept in mind that these

findings are based on relatively limited sampling and that we also

lack data from the full lengths of these genes. As such, care should

be taken to avoid reading too much into these results.

As for why a subset of the loci identified as being under selection

in the original SSR screen did not show evidence of selection at

the sequence level, it should be kept in mind that the tests

employed in that study were not, for the most part, formal

molecular evolutionary analyses. Rather, they were largely based

on the identification of extreme outliers, an approach that may

have been more prone to false positives. Also, as noted above, the

sequence-based tests for selection employed smaller sample sizes.

As such, one or two highly divergent alleles could produce a non-

significant ML-HKA test result, whereas this effect could have

been diluted in the larger screen of SSR polymorphism.

Increasing the efficiency of screens for selection
In addition to confirming the effects of selection on population

genetic diversity at the majority of loci that we had previously

identified as bearing the signature of selection in sunflower, our

results also provide methodological insights. Our results highlight a

potential means for increasing the efficiency of sequence-based

screens for selection in a pool of candidate genes. Because all 10

genes that showed sequence-based evidence of positive selection

were devoid of sequence variation in the selected population(s),

it should be possible to enrich for selectively important loci by

performing a pre-screen of the derived population to identify

loci with exceptionally low levels of diversity. This subset of loci

can then be assayed in the ancestral population to produce the

data necessary for formal tests of selection. In fact, this general

approach has been successfully applied in two studies of maize

[22,31]. Our results in sunflower suggest that it may be generally

applicable to studies of crop domestication.
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