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Abstract

Gene coexpression networks are a useful tool for summarizing transcriptomic data and pro-

viding insight into patterns of gene regulation in a variety of species. Though there has been

considerable interest in studying the evolution of network topology across species, less

attention has been paid to the relationship between network position and patterns of molec-

ular evolution. Here, we generated coexpression networks from publicly available expres-

sion data for seven flowering plant taxa (Arabidopsis thaliana, Glycine max, Oryza sativa,

Populus spp., Solanum lycopersicum, Vitis spp., and Zea mays) to investigate the relation-

ship between network position and rates of molecular evolution. We found a significant neg-

ative correlation between network connectivity and rates of molecular evolution, with more

highly connected (i.e., “hub”) genes having significantly lower nonsynonymous substitution

rates and dN/dS ratios compared to less highly connected (i.e., “peripheral”) genes across

the taxa surveyed. These findings suggest that more centrally located hub genes are, on

average, subject to higher levels of evolutionary constraint than are genes located on the

periphery of gene coexpression networks. The consistency of this result across disparate

taxa suggests that it holds for flowering plants in general, as opposed to being a species-

specific phenomenon.

Introduction

In recent years, transcriptomic analyses have become a standard tool in many laboratories

(e.g., [1–3]). Driven by the availability of high-density arrays and the ongoing improvement of

nucleotide sequencing platforms, massive amounts of transcriptomic data have thus been pro-

duced (e.g., [3,4]). While much attention has been paid to patterns of differential expression

and instances of alternative splicing across experimental perturbations, many have sought to

place transcriptomic data into a broader biological framework via the construction of gene

coexpression networks (e.g., [5–11]). Coexpression networks are composed of a series of

nodes (i.e., genes) and edges (i.e., connections) that reflect correlations in gene expression (Fig
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1). These networks are often constructed from multiple tissue types, developmental stages,

and/or experimental treatments, providing a holistic view of gene coexpression.

Once a coexpression network has been generated, it can be subdivided into ‘modules,’

which are suites of highly interconnected, or coexpressed genes. Within modules, new candi-

date genes for a trait of interest can be identified based on associations with genes previously

linked to these traits, an approach known as ‘guilt-by-association’ [12–14]. Such analyses have

thus emerged as a common approach for functional prediction (e.g., [15–18]), and have been

performed in a wide variety of species (e.g., Arabidopsis thaliana: [14,19–23]; Homo sapiens:
[24]; Mus musculus: [25]; Oryza sativa: [9,26,27]; and Zea mays: [27]). There has also been sub-

stantial interest in the evolution of network topologies across taxonomic groups and over time

(e.g., [28–32]). Less attention has, however, been paid to the influence of network topology on

the evolution of genes contained within such networks.

Interestingly, analyses of protein-protein interaction networks have revealed that the dele-

tion of more centrally located genes is often lethal and that connectivity in such networks is

negatively correlated with rates of protein evolution (e.g., [33–40]). These findings suggest that

more centrally located proteins, which have more direct molecular interactions (i.e., connec-

tions), are more likely to be essential and/or subject to stronger purifying selection than those

located on the periphery [6,41]. This pattern may reflect the involvement of such genes in

more biological processes, thereby placing them under greater pleiotropic constraint, though

Fig 1. Simplified representation of a hypothetical coexpression network. Node A represents a hub gene

while node B represents a peripheral gene. Lines connecting nodes represent network edges, and reflect

correlations in expression.

https://doi.org/10.1371/journal.pone.0182289.g001
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the biological significance of this correlation has been debated [42]. Similarly, the position of a

gene within a biochemical pathway has been found to influence rates of molecular evolution,

with genes found earlier in pathways exhibiting evidence of greater functional constraint than

their downstream counterparts (e.g., [43–48]. Once again, this pattern may be due to differ-

ences in pleiotropic constraint, with mutations in genes acting earlier in a pathway having

more potential downstream consequences than those in genes later in the pathway. It has been

suggested that a similar relationship should also hold in coexpression networks [6], with more

centrally located genes experiencing greater selective constraint. Two recent studies in plants

[49,50] have supported this prediction, though the extent to which this pattern holds across

plant species in general remains an open question.

Here, we investigate the relationship between the position of a gene in a coexpression net-

work and its rate of molecular evolution in seven disparate angiosperms. We hypothesize that

more centrally located (i.e., hub) genes (e.g., gene A in Fig 1) will, on average, experience

greater levels of functional constraint due to their potential involvement in a larger number

of biological processes as compared to genes located on the periphery. As such, these genes

should exhibit lower nonsynonymous substitution rates as compared to more peripheral

genes (e.g., gene B in Fig 1). To test this hypothesis, we leveraged existing datasets to analyze

genome-wide patterns of coexpression in Arabidopsis thaliana, Glycine max, Oryza sativa,

Populus spp., Solanum lycopersicum, Vitis spp., and Zea mays and used the resulting networks

to examine patterns of molecular evolution as a function of connectivity.

Materials and methods

Raw microarray datasets were downloaded from the Gene Expression Omnibus (GEO),

ArrayExpress, and/or The Arabidopsis Information Resource (TAIR, for A. thaliana only) cor-

responding to 2501, 1163, 1572, 1020, 385, 517, and 627 experiments for A. thaliana, G. max,

O. sativa, Populus spp., S. lycopersicum, Vitis spp., and Z.mays, respectively. The poplar and

grape arrays were utilized at the genus level, and represent 13 and 4 species, respectively. As is

common with coexpression networks, these arrays sample a large breadth of experimental data

spanning multiple tissues types, developmental stages, and stress treatments (both abiotic and

biotic). A complete list of selected experiments and arrays, including their GEO or ArrayEx-

press IDs along with a brief description, is provided in S1 Appendix. Expression intensities

were extracted from all selected microarray experiments and normalized for each taxon using

the Robust Multichip Average (RMA) method implemented through the Bioconductor pack-

age Affy in R [51]. After data normalization, unique probe-to-gene matches were identified,

where the gene corresponds to the GenBank or Phytozome unique identifier provided in the

array. If multiple array probes matched a given gene, one of these probes was selected at ran-

dom to eliminate duplicate data. Genes with variable expression were identified by assessing

the distribution of the coefficient of variation (CV) of expression, and only those genes with a

CV found within the upper 95% confidence interval of CV were retained. A complete list of

retained genes and probes can be found in S2 Appendix.

To determine gene connectivity, the R package Weighted Gene Co-expression Network

Analysis (WGCNA) [52] was used to construct coexpression networks for all seven plant taxa.

Briefly, WGCNA calculates a Pearson’s correlation matrix for all genes (95% confidence inter-

val), and transforms this matrix by raising all values to a power β (soft thresholding). The β
value for a given taxon is a nonlinear transformation, which can influence the correlation be-

tween any two genes [53], weighting those with higher connectivity over those with lower. This

influences the shape of network modules and creates a scale-free topology. We estimated a β
value for each taxon based on underlying expression values using the function pickSoftThreshold
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in the WGCNA package, resulting in power values of 2, 5, 13, 3, 9, 5, and 4 for A. thaliana, G.

max,O. sativa, Populus spp., S. lycopersicum, Vitis spp., and Z.mays, respectively (S1 Fig). All

remaining parameters were kept at the recommended default values as stated in the manual.

Estimates of per gene connectivity were extracted from the output by tallying the number of

genes connected to each unique gene in a network (S2 Appendix). Network characteristics for

all seven taxa are summarized in S3 Appendix.

Once connectivity was established, pairwise rates of molecular evolution were estimated for

each taxon using PAML’s yn00 model [54]. For comparing relative rates of molecular evolu-

tion between taxa, a monocot (O. sativa) or dicot (A. thaliana) outgroup was used for the dicot

or monocot species, respectively. For all seven taxa, sequence CDS files were gathered or gen-

erated to match with array probes. For A. thaliana, O. sativa, and G. max, these CDS files were

downloaded from Phytozome v10.1 (http://phytozome.jgi.doe.gov/pz/portal.html), while

sequences for the other species were downloaded from GenBank by matching probe annota-

tions to GenBank sequence accession numbers. Putative orthologs between each taxon and its

outgroup were estimated using reciprocal best BLAST hits with an e-value threshold of<1E-

08. Sequence pairs were aligned using MUSCLE v.3.8 [55], and in-frame stretches of aligned

sequence (� 30 bp) were identified and concatenated into a single contiguous sequence

of� 300 bp prior to analyses in PAML, using custom perl scripts (mani-seq; https://github.

com/bewickaj). All orthologous sequence pairs can be found in S2 Appendix. An estimate of

per gene connectivity was determined for each taxon (range of all taxon-wide averages: 228 to

4682) using the coexpression networks generated.

Rates of nonsynonymous substitutions per nonsynonymous site (dN), synonymous substi-

tutions per synonymous site (dS), and estimates of adaptive evolution (ω = dN/dS) were visual-

ized via linear regression against our estimates of gene connectivity (Fig 2). Significance of the

correlations, estimated as Kendall’s tau (τ) to address tied correlation ranks, was assessed via

randomization tests. Briefly, this involved randomizing the parameter of interest vs. connectiv-

ity for each comparison in Fig 2 and recalculating the correlation. This procedure was repeated

10,000 times to generate a null distribution against which the observed values were compared.

To account for multiple comparisons across taxa, we applied a sequential Bonferroni correc-

tion at α = 0.05 [56, 57]. All statistical tests were performed in R [58].

Results

In terms of the relationship between connectedness and evolutionary constraint, our results

align with what has previously been found in biochemical pathways and protein-protein inter-

action networks. Our analyses (based on n = 859, 294, 139, 265, 416, 859, 323 orthologous

sequence pairs for A. thaliana—O.sativa, G. max—O. sativa, Populus spp—O. sativa, S. lycoper-
sicum—O. sativa, Vitis spp.—O. sativa, O. sativa—A. thaliana, Z. mays—A. thaliana, respec-

tively) revealed that the nonsynonymous substitution rate (dN) was significantly negatively

correlated with connectivity in the majority of taxa investigated (the results for G. max and

Populus spp. were nominally significant based on our randomization tests, but not significant

after controlling for multiple comparisons; Fig 2A). The same overall pattern was evident for

our estimates of adaptive evolution (ω = dN/dS) (Fig 2C), though the correlations between ω
and connectedness were generally weaker than those between dN and connectedness. While

the correlations between dN or ω and connectedness were not significant for two of the seven

taxa (G.max and Populus spp.), they did exhibit the same overall trend (i.e., a negative relation-

ship) as was observed in the other five taxa. When combining our results across all seven taxa,

we found that the overall pattern–i.e., more highly interconnected hub genes exhibited stron-

ger evolutionary constraint–was highly significant (Fisher’s combined probability test, P< 1E-
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08 for both dN and ω [using CombinePValue; https://CRAN.R-project.org/package=

CombinePValue]; S2 Appendix). The synonymous substitution rate (dS)was only significantly

correlated with connectivity in the A. thaliana—O. sativa comparison (Fig 2B). While all dS-

related correlations had the same (negative) sign, resulting in a combined probability of

P< 1E-02, it is noteworthy that this result is largely attributable to the A. thaliana—O. sativa
comparison (P = 0.0009, with the other six P-values ranging from 0.11–0.58). Despite overall

differences in the numbers of connections amongst genes within a species, the connectivity of

orthologous gene pairs between each taxon and its outgroup (i.e., A. thaliana for monocots

and O. sativa for dicots) was positively correlated (all P< 0.05, Fig 2D; S4 Appendix).

Discussion

Taken together, these findings indicate that more centrally located and highly interconnected

(i.e., hub) genes exhibit reduced nonsynonymous substitution rates and rates of adaptive evo-

lution. This observation is consistent with our hypothesis that such genes are subject to greater

functional constraint than less connected genes that can be found on the periphery of coex-

pression networks. The consistency of this result across disparate taxa suggests that it holds for

flowering plants in general, as opposed to being a species-specific phenomenon. Though our

results align with the findings of previous work done in both protein-protein interaction net-

works [33–36] and biochemical pathways (e.g., [43–47]), it is important to note that patterns

of coexpression do not necessarily translate into direct molecular interactions or biochemical

relationships. So why do we see this negative correlation between connectivity and rates of

molecular evolution, both here and in other recent studies in plants (i.e., [49,50])? While coex-

pression patterns are not necessarily indicative of direct molecular interactions, it seems likely

Fig 2. Linear regression of gene connectivity of seven taxa analyzed. Taxa: A. thaliana, G. max, Populus spp., S. lycopersicum, Vitis spp., O. sativa,

and Z. mays, against (a): non-synonymous substitutions (dN), (b): synonymous substitutions (dS), (c): estimates of adaptive evolution (ω = dN/dS) and (d):

number of connections in ortholog comparison. Circles represent genes, while the regression coefficient, represented as Kendall’s tau (τ) coefficient, is the

dashed line. Significance is indicated by bold text. Note that all significant results except the two marked with an asterisk (*) remained significant after

correcting for multiple comparisons (see text for details).

https://doi.org/10.1371/journal.pone.0182289.g002
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that more centrally located (i.e., hub) genes will tend to influence more aspects of organismal

biology than peripheral genes, and might thus be expected to experience more antagonistic

pleiotropy. That is, alterations of the amino acid sequence of a hub gene could have a multi-

tude of associated effects, some of which may be deleterious, whereas tinkering at the periph-

ery of a network might result in variants with fewer negative consequences.

While two recent studies have documented a significant, negative correlation between dS
and connectivity in plants [49,50], we saw little evidence of such a correlation in our study.

Indeed, only one of the comparisons (A. thaliana—O. sativa) revealed a highly significant

(negative) correlation between dS and connectivity. While the remaining six comparisons

resulted in negative τ values, none of them individually approached significance. Nonetheless,

the combined probability of these results was significant (P< 1E-02), and the likelihood of

observing seven negative correlations by chance is extremely low in the absence of a true rela-

tionship between dS and connectivity (two-tailed sign test: P< 0.05). Such a relationship

could be a byproduct of mutation rate variation, with more highly connected genes experienc-

ing fewer mutations, or it could be due to variation in selective constraint on synonymous sites

(e.g., due to codon usage bias; [49]) as a function of connectedness. As noted by Josephs et al.

(2017), heterogeneity in dS due to variation in synonymous constraint could explain our

observation of a weaker correlation between ω and connectedness as compared to dN and

connectedness.

Interestingly, a general tendency toward reduced expression variation in hub genes, evi-

denced in part by a paucity of “local” eQTLs associated with such genes, has also been observed

[49,50]. This observation suggests that expression level variation may be subject to stabilizing

selection in more highly connected genes as compared to those with fewer connections. As

such, it may be that constraint on both sequence and expression changes is relaxed for genes on

the periphery of coexpression networks as compared to more centrally located genes. Unfortu-

nately, the data analyzed herein do not allow us to perform equivalent analyses, and so a more

complete understanding of the relationship between expression variation and network position

across flowering plants awaits further study. Likewise, a more holistic understanding of the

influence of network topology on patterns of both molecular evolution and expression variation

across the entirety of the plant kingdom awaits a more complete taxonomic sampling.
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